-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
40 lines (30 loc) · 1.17 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import torch.nn as nn
from network import Net
import torch.optim as optim
def cifar_trainer(train_loader) -> Net:
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(5): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, _labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, _labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print("[%d, %5d] loss: %.3f" % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print("Finished Training")
return net
if __name__ == "__main__":
from datasource import get_trainset
train_loader = get_trainset()
net = cifar_trainer(train_loader)