-
Notifications
You must be signed in to change notification settings - Fork 0
/
points_lines.cpp
293 lines (239 loc) · 12.7 KB
/
points_lines.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
#define INF 1e9
#define EPS 1e-9
#define PI acos(-1.0) // important constant; alternative #define PI (2.0 * acos(0.0))
double DEG_to_RAD(double d) { return d * PI / 180.0; }
double RAD_to_DEG(double r) { return r * 180.0 / PI; }
// struct point_i { int x, y; }; // basic raw form, minimalist mode
struct point_i { int x, y; // whenever possible, work with point_i
point_i() { x = y = 0; } // default constructor
point_i(int _x, int _y) : x(_x), y(_y) {} }; // user-defined
struct point { double x, y; // only used if more precision is needed
point() { x = y = 0.0; } // default constructor
point(double _x, double _y) : x(_x), y(_y) {} // user-defined
bool operator < (point other) const { // override less than operator
if (fabs(x - other.x) > EPS) // useful for sorting
return x < other.x; // first criteria , by x-coordinate
return y < other.y; } // second criteria, by y-coordinate
// use EPS (1e-9) when testing equality of two floating points
bool operator == (point other) const {
return (fabs(x - other.x) < EPS && (fabs(y - other.y) < EPS)); } };
double dist(point p1, point p2) { // Euclidean distance
// hypot(dx, dy) returns sqrt(dx * dx + dy * dy)
return hypot(p1.x - p2.x, p1.y - p2.y); } // return double
// rotate p by theta degrees CCW w.r.t origin (0, 0)
point rotate(point p, double theta) {
double rad = DEG_to_RAD(theta); // multiply theta with PI / 180.0
return point(p.x * cos(rad) - p.y * sin(rad),
p.x * sin(rad) + p.y * cos(rad)); }
struct line { double a, b, c; }; // a way to represent a line
// the answer is stored in the third parameter (pass by reference)
void pointsToLine(point p1, point p2, line &l) {
if (fabs(p1.x - p2.x) < EPS) { // vertical line is fine
l.a = 1.0; l.b = 0.0; l.c = -p1.x; // default values
} else {
l.a = -(double)(p1.y - p2.y) / (p1.x - p2.x);
l.b = 1.0; // IMPORTANT: we fix the value of b to 1.0
l.c = -(double)(l.a * p1.x) - p1.y;
} }
// not needed since we will use the more robust form: ax + by + c = 0 (see above)
struct line2 { double m, c; }; // another way to represent a line
int pointsToLine2(point p1, point p2, line2 &l) {
if (abs(p1.x - p2.x) < EPS) { // special case: vertical line
l.m = INF; // l contains m = INF and c = x_value
l.c = p1.x; // to denote vertical line x = x_value
return 0; // we need this return variable to differentiate result
}
else {
l.m = (double)(p1.y - p2.y) / (p1.x - p2.x);
l.c = p1.y - l.m * p1.x;
return 1; // l contains m and c of the line equation y = mx + c
} }
bool areParallel(line l1, line l2) { // check coefficients a & b
return (fabs(l1.a-l2.a) < EPS) && (fabs(l1.b-l2.b) < EPS); }
bool areSame(line l1, line l2) { // also check coefficient c
return areParallel(l1 ,l2) && (fabs(l1.c - l2.c) < EPS); }
// returns true (+ intersection point) if two lines are intersect
bool areIntersect(line l1, line l2, point &p) {
if (areParallel(l1, l2)) return false; // no intersection
// solve system of 2 linear algebraic equations with 2 unknowns
p.x = (l2.b * l1.c - l1.b * l2.c) / (l2.a * l1.b - l1.a * l2.b);
// special case: test for vertical line to avoid division by zero
if (fabs(l1.b) > EPS) p.y = -(l1.a * p.x + l1.c);
else p.y = -(l2.a * p.x + l2.c);
return true; }
struct vec { double x, y; // name: `vec' is different from STL vector
vec(double _x, double _y) : x(_x), y(_y) {} };
vec toVec(point a, point b) { // convert 2 points to vector a->b
return vec(b.x - a.x, b.y - a.y); }
vec scale(vec v, double s) { // nonnegative s = [<1 .. 1 .. >1]
return vec(v.x * s, v.y * s); } // shorter.same.longer
point translate(point p, vec v) { // translate p according to v
return point(p.x + v.x , p.y + v.y); }
// convert point and gradient/slope to line
void pointSlopeToLine(point p, double m, line &l) {
l.a = -m; // always -m
l.b = 1; // always 1
l.c = -((l.a * p.x) + (l.b * p.y)); } // compute this
void closestPoint(line l, point p, point &ans) {
line perpendicular; // perpendicular to l and pass through p
if (fabs(l.b) < EPS) { // special case 1: vertical line
ans.x = -(l.c); ans.y = p.y; return; }
if (fabs(l.a) < EPS) { // special case 2: horizontal line
ans.x = p.x; ans.y = -(l.c); return; }
pointSlopeToLine(p, 1 / l.a, perpendicular); // normal line
// intersect line l with this perpendicular line
// the intersection point is the closest point
areIntersect(l, perpendicular, ans); }
// returns the reflection of point on a line
void reflectionPoint(line l, point p, point &ans) {
point b;
closestPoint(l, p, b); // similar to distToLine
vec v = toVec(p, b); // create a vector
ans = translate(translate(p, v), v); } // translate p twice
double dot(vec a, vec b) { return (a.x * b.x + a.y * b.y); }
double norm_sq(vec v) { return v.x * v.x + v.y * v.y; }
// returns the distance from p to the line defined by
// two points a and b (a and b must be different)
// the closest point is stored in the 4th parameter (byref)
double distToLine(point p, point a, point b, point &c) {
// formula: c = a + u * ab
vec ap = toVec(a, p), ab = toVec(a, b);
double u = dot(ap, ab) / norm_sq(ab);
c = translate(a, scale(ab, u)); // translate a to c
return dist(p, c); } // Euclidean distance between p and c
// returns the distance from p to the line segment ab defined by
// two points a and b (still OK if a == b)
// the closest point is stored in the 4th parameter (byref)
double distToLineSegment(point p, point a, point b, point &c) {
vec ap = toVec(a, p), ab = toVec(a, b);
double u = dot(ap, ab) / norm_sq(ab);
if (u < 0.0) { c = point(a.x, a.y); // closer to a
return dist(p, a); } // Euclidean distance between p and a
if (u > 1.0) { c = point(b.x, b.y); // closer to b
return dist(p, b); } // Euclidean distance between p and b
return distToLine(p, a, b, c); } // run distToLine as above
double angle(point a, point o, point b) { // returns angle aob in rad
vec oa = toVec(o, a), ob = toVec(o, b);
return acos(dot(oa, ob) / sqrt(norm_sq(oa) * norm_sq(ob))); }
double cross(vec a, vec b) { return a.x * b.y - a.y * b.x; }
//// another variant
//int area2(point p, point q, point r) { // returns 'twice' the area of this triangle A-B-c
// return p.x * q.y - p.y * q.x +
// q.x * r.y - q.y * r.x +
// r.x * p.y - r.y * p.x;
//}
// note: to accept collinear points, we have to change the `> 0'
// returns true if point r is on the left side of line pq
bool ccw(point p, point q, point r) {
return cross(toVec(p, q), toVec(p, r)) > 0; }
// returns true if point r is on the same line as the line pq
bool collinear(point p, point q, point r) {
return fabs(cross(toVec(p, q), toVec(p, r))) < EPS; }
int main() {
point P1, P2, P3(0, 1); // note that both P1 and P2 are (0.00, 0.00)
printf("%d\n", P1 == P2); // true
printf("%d\n", P1 == P3); // false
vector<point> P;
P.push_back(point(2, 2));
P.push_back(point(4, 3));
P.push_back(point(2, 4));
P.push_back(point(6, 6));
P.push_back(point(2, 6));
P.push_back(point(6, 5));
// sorting points demo
sort(P.begin(), P.end());
for (int i = 0; i < (int)P.size(); i++)
printf("(%.2lf, %.2lf)\n", P[i].x, P[i].y);
// rearrange the points as shown in the diagram below
P.clear();
P.push_back(point(2, 2));
P.push_back(point(4, 3));
P.push_back(point(2, 4));
P.push_back(point(6, 6));
P.push_back(point(2, 6));
P.push_back(point(6, 5));
P.push_back(point(8, 6));
/*
// the positions of these 7 points (0-based indexing)
6 P4 P3 P6
5 P5
4 P2
3 P1
2 P0
1
0 1 2 3 4 5 6 7 8
*/
double d = dist(P[0], P[5]);
printf("Euclidean distance between P[0] and P[5] = %.2lf\n", d); // should be 5.000
// line equations
line l1, l2, l3, l4;
pointsToLine(P[0], P[1], l1);
printf("%.2lf * x + %.2lf * y + %.2lf = 0.00\n", l1.a, l1.b, l1.c); // should be -0.50 * x + 1.00 * y - 1.00 = 0.00
pointsToLine(P[0], P[2], l2); // a vertical line, not a problem in "ax + by + c = 0" representation
printf("%.2lf * x + %.2lf * y + %.2lf = 0.00\n", l2.a, l2.b, l2.c); // should be 1.00 * x + 0.00 * y - 2.00 = 0.00
// parallel, same, and line intersection tests
pointsToLine(P[2], P[3], l3);
printf("l1 & l2 are parallel? %d\n", areParallel(l1, l2)); // no
printf("l1 & l3 are parallel? %d\n", areParallel(l1, l3)); // yes, l1 (P[0]-P[1]) and l3 (P[2]-P[3]) are parallel
pointsToLine(P[2], P[4], l4);
printf("l1 & l2 are the same? %d\n", areSame(l1, l2)); // no
printf("l2 & l4 are the same? %d\n", areSame(l2, l4)); // yes, l2 (P[0]-P[2]) and l4 (P[2]-P[4]) are the same line (note, they are two different line segments, but same line)
point p12;
bool res = areIntersect(l1, l2, p12); // yes, l1 (P[0]-P[1]) and l2 (P[0]-P[2]) are intersect at (2.0, 2.0)
printf("l1 & l2 are intersect? %d, at (%.2lf, %.2lf)\n", res, p12.x, p12.y);
// other distances
point ans;
d = distToLine(P[0], P[2], P[3], ans);
printf("Closest point from P[0] to line (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, d);
closestPoint(l3, P[0], ans);
printf("Closest point from P[0] to line V2 (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, dist(P[0], ans));
d = distToLineSegment(P[0], P[2], P[3], ans);
printf("Closest point from P[0] to line SEGMENT (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, d); // closer to A (or P[2]) = (2.00, 4.00)
d = distToLineSegment(P[1], P[2], P[3], ans);
printf("Closest point from P[1] to line SEGMENT (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, d); // closer to midway between AB = (3.20, 4.60)
d = distToLineSegment(P[6], P[2], P[3], ans);
printf("Closest point from P[6] to line SEGMENT (P[2]-P[3]): (%.2lf, %.2lf), dist = %.2lf\n", ans.x, ans.y, d); // closer to B (or P[3]) = (6.00, 6.00)
reflectionPoint(l4, P[1], ans);
printf("Reflection point from P[1] to line (P[2]-P[4]): (%.2lf, %.2lf)\n", ans.x, ans.y); // should be (0.00, 3.00)
printf("Angle P[0]-P[4]-P[3] = %.2lf\n", RAD_to_DEG(angle(P[0], P[4], P[3]))); // 90 degrees
printf("Angle P[0]-P[2]-P[1] = %.2lf\n", RAD_to_DEG(angle(P[0], P[2], P[1]))); // 63.43 degrees
printf("Angle P[4]-P[3]-P[6] = %.2lf\n", RAD_to_DEG(angle(P[4], P[3], P[6]))); // 180 degrees
printf("P[0], P[2], P[3] form A left turn? %d\n", ccw(P[0], P[2], P[3])); // no
printf("P[0], P[3], P[2] form A left turn? %d\n", ccw(P[0], P[3], P[2])); // yes
printf("P[0], P[2], P[3] are collinear? %d\n", collinear(P[0], P[2], P[3])); // no
printf("P[0], P[2], P[4] are collinear? %d\n", collinear(P[0], P[2], P[4])); // yes
point p(3, 7), q(11, 13), r(35, 30); // collinear if r(35, 31)
printf("r is on the %s of line p-r\n", ccw(p, q, r) ? "left" : "right"); // right
/*
// the positions of these 6 points
E<-- 4
3 B D<--
2 A C
1
-4-3-2-1 0 1 2 3 4 5 6
-1
-2
F<-- -3
*/
// translation
point A(2.0, 2.0);
point B(4.0, 3.0);
vec v = toVec(A, B); // imagine there is an arrow from A to B (see the diagram above)
point C(3.0, 2.0);
point D = translate(C, v); // D will be located in coordinate (3.0 + 2.0, 2.0 + 1.0) = (5.0, 3.0)
printf("D = (%.2lf, %.2lf)\n", D.x, D.y);
point E = translate(C, scale(v, 0.5)); // E will be located in coordinate (3.0 + 1/2 * 2.0, 2.0 + 1/2 * 1.0) = (4.0, 2.5)
printf("E = (%.2lf, %.2lf)\n", E.x, E.y);
// rotation
printf("B = (%.2lf, %.2lf)\n", B.x, B.y); // B = (4.0, 3.0)
point F = rotate(B, 90); // rotate B by 90 degrees COUNTER clockwise, F = (-3.0, 4.0)
printf("F = (%.2lf, %.2lf)\n", F.x, F.y);
point G = rotate(B, 180); // rotate B by 180 degrees COUNTER clockwise, G = (-4.0, -3.0)
printf("G = (%.2lf, %.2lf)\n", G.x, G.y);
return 0;
}