LUME-model holds data structures used in the LUME modeling toolset. Variables and models built using LUME-model will be compatible with other tools. LUME-model uses pydantic models to enforce typed attributes upon instantiation.
- Python >= 3.9
- pydantic
- numpy
LUME-model can be installed with conda using the command:
$ conda install lume-model -c conda-forge
A development environment may be created using the packaged dev-environment.yml
file.
conda env create -f dev-environment.yml
The LUME-model variables are intended to enforce requirements for input and output variables by variable type. Current variable implementations are scalar (float) or image (numpy array) type.
Example of minimal implementation of scalar input and output variables:
from lume_model.variables import ScalarInputVariable, ScalarOutputVariable
input_variable = ScalarInputVariable(name="test_input", default=0.1, value_range=[1, 2])
output_variable = ScalarOutputVariable(name="test_output")
Example of minimal implementation of image input and output variables:
from lume_model.variables import ImageInputVariable, ImageOutputVariable
import numpy as np
input_variable = ImageInputVariable(
name="test_input",
default= np.array([[1, 2,], [3, 4]]),
value_range=[1, 10],
axis_labels=["count_1", "count_2"],
x_min=0,
y_min=0,
x_max=5,
y_max=5,
)
output_variable = ImageOutputVariable(
name="test_output",
axis_labels=["count_1", "count_2"],
)
All input variables may be made into constants by passing the is_constant=True
keyword argument. Value assingments on these constant variables will raise an error message.
LUME-model model classes are intended to guide user development while allowing for flexibility and customizability. The base class lume_model.models.BaseModel
is used to enforce LUME tool compatable classes for the execution of trained models. For this case, model loading and execution should be organized into class methods.
Model Requirements:
- input_variables, output_variables: LUME-model input and output variables are required for use with lume-epics tools. The user can optionally define these as class attributes or design the subclass so that these are passed during initialization . Names of all variables must be unique in order to be served using the EPICS tools. A utility function for saving these variables, which also enforces the uniqueness constraint, is provided (lume_model.utils.save_variables).
- evaluate: The evaluate method is called by the serving model. Subclasses must implement the method, accepting a list of input variables and returning a list of the model's output variables with value attributes updated based on model execution.
Example model implementation:
from lume_model.models import BaseModel
class ExampleModel(BaseModel):
input_variables = {
"input1": ScalarInputVariable(name="input1", default=1, range=[0.0, 5.0]),
"input2": ScalarInputVariable(name="input2", default=2, range=[0.0, 5.0]),
}
output_variables = {
"output1": ScalarOutputVariable(name="output1"),
"output2": ScalarOutputVariable(name="output2"),
}
def evaluate(self, input_variables):
self.input_variables = {
variable.name: variable for variable in input_variables
}
self.output_variables["output1"].value = (
self.input_variables["input1"].value * 2
)
self.output_variables["output2"].value = (
self.input_variables["input2"].value * 2
)
# return inputs * 2
return list(self.output_variables.values())
Models and variables may be constructed using a yaml configuration file. The configuration file consists of three sections:
- model (optional, can alternatively pass a custom model class into the
model_from_yaml
method) - input_variables
- output_variables
The model section is used for the initialization of model classes. The model_class
entry is used to specify the model class to initialize. The model_from_yaml
method will attempt to import the specified class. Additional model-specific requirements may be provided. These requirements will be checked before model construction. Model keyword arguments may be passed via the config file or with the function kwarg model_kwargs
. All models are assumed to accept input_variables
and output_variables
as keyword arguments.
The below example outlines the specification for a model compatible with the lume-model
keras/tensorflow toolkit.
model:
model_class: lume_model.keras.KerasModel
requirements:
tensorflow: 2.3.1
args:
model_file: examples/files/iris_model.h5
output_format:
type: softmax
Variables are constructed the minimal data requirements for inputs/outputs.
An example ScalarInputVariable:
input_variables:
SepalLength:
name: SepalLength
type: scalar
default: 4.3
lower: 4.3
upper: 7.9
For image variables, default values must point to files associated with a default numpy array representation. The file import will be relative to PYTHONPATH.
An example ImageInputVariable:
input_variables:
InputImage:
name: test
type: image
default: examples/files/example_input_image.npy
range: [0, 100]
x_min: 0
x_max: 10
y_min: 0
y_max: 10
axis_labels: ["x", "y"]
x_min_variable: xmin_pv
y_min_variable: ymin_pv
x_max_variable: xmax_pv
y_max_variable: ymax_pv
At present, only the tensorflow v2 backend is supported for this toolkit.
The KerasModel
packaged in the toolkit will be compatible with models saved using the keras.save_model()
method.
-
The model must be trained using the custom scaling layers provided in
lume_model.keras.layers
OR using preprocessing layers packaged with Keras OR the custom layers must be defined during build and made accessible during loading by the user. Custom layers are not supported out-of-the box by this toolkit. -
The keras model must use named input layers such that the model will accept a dictionary input OR the
KerasModel
must be subclassed and theformat_input
andformat_output
member functions must be overwritten with proper formatting of model input from a dictionary mapping input variable names to values and proper output parsing into a dictionary, respectively. This will require use of the Keras functional API for model construction.
An example of a model built using the functional API is given below:
from tensorflow import keras
import tensorflow as tf
sepal_length_input = keras.Input(shape=(1,), name="SepalLength")
sepal_width_input = keras.Input(shape=(1,), name="SepalWidth")
petal_length_input = keras.Input(shape=(1,), name="PetalLength")
petal_width_input = keras.Input(shape=(1,), name="PetalWidth")
inputs = [sepal_length_input, sepal_width_input, petal_length_input, petal_width_input]
merged = keras.layers.concatenate(inputs)
dense1 = Dense(8, activation='relu')(merged)
output = Dense(3, activation='softmax', name="Species")(dense1)
# Compile model
model = keras.Model(inputs=inputs, outputs=[output])
optimizer = tf.keras.optimizers.Adam()
model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])
Models built in this way will accept inputs in dictionary form mapping variable name to a numpy array of values.
The KerasModel can be instantiated using the utility function lume_model.utils.model_from_yaml
method.
KerasModel can be specified in the model_class
of the model configuration.
model:
model_class: lume_model.keras.KerasModel
Custom parsing will require a custom model class.
In the same way as the KerasModel, a PyTorchModel can also be loaded using the lume_model.utils.model_from_yaml
method, specifying PyTorchModel
in the model_class
of the configuration file.
model:
kwargs:
model_file: /path/to/california_regression.pt
model_class: lume_model.torch.PyTorchModel
model_info: path/to/model_info.json
output_format:
type: tensor
requirements:
torch: 1.12
In addition to the model_class, we also specify the path to the pytorch model (saved using torch.save()
) and additional information about the model through the model_info.json
file such as the order of the feature names and outputs of the model:
{
"train_input_mins": [
0.4999000132083893,
...
-124.3499984741211
],
"train_input_maxs": [
15.000100135803223,
...
-114.30999755859375
],
"model_in_list": [
"MedInc",
...
"Longitude"
],
"model_out_list": [
"MedHouseVal"
],
"loc_in": {
"MedInc": 0,
...
"Longitude": 7
},
"loc_out": {
"MedHouseVal": 0
}
}
The output_format
specification indicates which form the outputs of the model's evaluate()
function should take, which may vary depending on the application. PyTorchModels working with the LUME-EPICS service will require an OutputVariable
type, while Xopt requires either a dictionary of float values or tensors as output.
It is important to note that currently the transformers are not loaded into the model when using the model_from_yaml
method. These need to be created separately and added either:
- to the model's
kwargs
before instantiating
import torch
import json
from lume_model.torch import PyTorchModel
# load the model class and kwargs
with open(f"california_variables.yml","r") as f:
yaml_model, yaml_kwargs = model_from_yaml(f, load_model=False)
# construct the transformers
with open("normalization.json", "r") as f:
normalizations = json.load(f)
input_transformer = AffineInputTransform(
len(normalizations["x_mean"]),
coefficient=torch.tensor(normalizations["x_scale"]),
offset=torch.tensor(normalizations["x_mean"]),
)
output_transformer = AffineInputTransform(
len(normalizations["y_mean"]),
coefficient=torch.tensor(normalizations["y_scale"]),
offset=torch.tensor(normalizations["y_mean"]),
)
model_kwargs["input_transformers"] = [input_transformer]
model_kwargs["output_transformers"] = [output_transformer]
model = PyTorchModel(**model_kwargs)
- using the setters for the transformer attributes in the model.
# load the model
with open("california_variables.yml", "r") as f:
model = model_from_yaml(f, load_model=True)
# construct the transformers
with open("normalization.json", "r") as f:
normalizations = json.load(f)
input_transformer = AffineInputTransform(
len(normalizations["x_mean"]),
coefficient=torch.tensor(normalizations["x_scale"]),
offset=torch.tensor(normalizations["x_mean"]),
)
output_transformer = AffineInputTransform(
len(normalizations["y_mean"]),
coefficient=torch.tensor(normalizations["y_scale"]),
offset=torch.tensor(normalizations["y_mean"]),
)
# use the model's setter to add the transformers. Here we use a tuple
# to tell the setter where in the list the transformer should be inserted.
# In this case because we only have one, we add them at the beginning
# of the lists.
model.input_transformers = (input_transformer, 0)
model.output_transformers = (output_transformer, 0)