tskit
is a collection of tools for time series data analysis.
Only univariate time series are supported at the moment.
import pandas as pd
import tskit
ts = (
tskit.TimeSeries.from_generators(
['sine', 'square', 'random_walk'],
generator_args=[{}, {'period': 1440}, {}],
weights=[1.0, 0.5, 0.8],
standardize_idx=[2],
start=pd.Timestamp('2022-09-27 00:00:00'),
length=1440,
freq='1min',
)
.smooth('ewma', alpha=0.5)
.to_shapelet(alpha=5)
.tile(10)
.add_noise('gaussian', amplitude=0.2)
)
ts.save('out/uts.csv')
tskit.plot(ts)
- Time series generation
- Add noise to time series
- Gaussian noise
- Uniform noise
- 1-D Perlin noise
- Plot time series
- Plot univariate time series
- Time series smoothing
- Moving average (MA)
- Exponential weighted moving average (EWMA)
- Median filter
- Savitzky-Golay filter
- Time series transformation
- Anomaly/outlier injection
- Point-wise outlier
- Contextual outlier
- Global outlier
- Pattern-wise outlier
- Shapelet outlier
- Trend outlier
- Seasonal outlier
- Point-wise outlier
- Support for multivariate time series