Skip to content

alvinwan/pcmatch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Point Cloud Matching

Uses iterative closest point (ICP) to match sample point clouds to templates. Includes utilities to convert existing .stl, .obj, .xaml, .pkl etc. objects into point cloud, numpy arrays. To visualize the results in an interactive viewer, see viewer/.

screen shot 2017-06-20 at 12 05 20 am

Install

The project is written in Python 3 and is not guaranteed to successfully backport to Python 2.

(Optional) We recommend setting up a virtual environment.

virtualenv pcm --python=python3
source activate pcm/bin/activate

Say $PCM_ROOT is the root of your repository. Navigate to your root repository.

cd $PCM_ROOT

We need to setup our Python dependencies.

pip install -r requirements.txt

Run

By default, the script looks for sample point clouds in ./data/raw and template point clouds in ./data/templates. All point cloud files are .npy files containing nx3 matrices of x,y,z respectively.

python label.py

Here are full usage instructions:

Usage:
    label.py [options]

Options:
    --template=<path>   Path to templates [default: ./data/templates/*.npy]
    --raw=<path>        Path to unclassified data [default: ./data/raw/*.npy]
    --out=<out>         Path for final results [default: ./out/labels.npy]

templates