forked from PytLab/VASPy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
128 lines (94 loc) · 3.5 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python
from setuptools import setup, find_packages
from vaspy import __version__ as version
maintainer = 'Shao-Zheng-Jiang'
maintainer_email = 'shaozhengjiang@gmail.com'
author = maintainer
author_email = maintainer_email
description = "A pure Python library designed to make it easy and quick to manipulate VASP files"
long_description = """
=====
VASPy
=====
.. image:: https://travis-ci.org/PytLab/VASPy.svg?branch=master
:target: https://travis-ci.org/PytLab/VASPy
:alt: Build Status
.. image:: https://landscape.io/github/PytLab/VASPy/master/landscape.svg?style=flat
:target: https://landscape.io/github/PytLab/VASPy/master
:alt: Code Health
.. image:: https://codecov.io/gh/PytLab/VASPy/branch/master/graph/badge.svg
:target: https://codecov.io/gh/PytLab/VASPy
.. image:: https://img.shields.io/badge/python-3.5, 2.7-green.svg
:target: https://www.python.org/downloads/release/python-351/
:alt: platform
.. image:: https://img.shields.io/badge/pypi-v0.8.12-blue.svg
:target: https://pypi.python.org/pypi/vaspy/
:alt: versions
Introduction
------------
VASPy is a pure Python library designed to make it easy and quick to manipulate VASP files.
You can use VASPy to manipulate VASP files in command lins or write your own python scripts to process VASP files and visualize VASP data.
In `/scripts <https://github.com/PytLab/VASPy/tree/master/scripts>`_ , there are some scripts written by me for daily use.
Installation
------------
1. Via pip(recommend)::
pip install vaspy
2. Via easy_install::
easy_install vaspy
3. From source::
python setup.py install
If you want to use **mayavi** to visualize VASP data, it is recommened to install `Canopy environment <https://store.enthought.com/downloads/#default>`_ on your device instead of installing it manually.
After installing canopy, you can set corresponding aliases, for example:
.. code-block:: shell
alias canopy='/Users/<yourname>/Library/Enthought/Canopy/edm/envs/User/bin/python'
alias canopy-pip='/Users/zjshao/Library/Enthought/Canopy/edm/envs/User/bin/pip'
alias canopy-ipython='/Users/<yourname>/Library/Enthought/Canopy/edm/envs/User/bin/ipython'
alias canopy-jupyter='/Users/<yourname>/Library/Enthought/Canopy/edm/envs/User/bin/jupyter'
Then you can install VASPy to canopy::
canopy-pip install vaspy
"""
install_requires = [
'numpy>=1.11.1',
'matplotlib>=1.5.2',
'scipy>=0.18.0',
]
license = 'LICENSE'
# Get long description.
#with open("README.rst") as f:
# lines = f.readlines()
#
#long_description = ""
#for line in lines:
# if "Installation" in line:
# break
# else:
# long_description += line
name = 'vaspy'
platforms = ['linux']
url = 'https://github.com/PytLab/VASPy'
download_url = ''
classifiers = [
'Development Status :: 3 - Alpha',
'Topic :: Text Processing',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
]
test_suite = 'vaspy.tests.test_all'
setup(author=author,
author_email=author_email,
description=description,
license=license,
long_description=long_description,
install_requires=install_requires,
maintainer=maintainer,
name=name,
packages=find_packages(),
platforms=platforms,
url=url,
download_url=download_url,
version=version,
test_suite=test_suite,
classifiers=classifiers)