-
Notifications
You must be signed in to change notification settings - Fork 21
/
double_jpeg_compression.py
79 lines (60 loc) · 1.9 KB
/
double_jpeg_compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
# import pandas as pd
import cv2
# import argparse
# import csv
# import sys
from scipy import fftpack as fftp
from matplotlib import pyplot as plt
def detect(image):
firstq = 30
secondq = 40
thres = 0.5
dct_rows = 0
dct_cols = 0
image = cv2.imread(image)
# image = cv2.imread(image)
shape = image.shape
if shape[0] % 8 != 0:
dct_rows = shape[0]+8-shape[0] % 8
else:
dct_rows = shape[0]
if shape[1] % 8 != 0:
dct_cols = shape[1]+8-shape[1] % 8
else:
dct_cols = shape[1]
dct_image = np.zeros((dct_rows, dct_cols, 3), np.uint8)
dct_image[0:shape[0], 0:shape[1]] = image
y = cv2.cvtColor(dct_image, cv2.COLOR_BGR2YCR_CB)[:, :, 0]
w = y.shape[1]
h = y.shape[0]
n = w*h/64
Y = y.reshape(h//8, 8, -1, 8).swapaxes(1, 2).reshape(-1, 8, 8)
qDCT = []
for i in range(0, Y.shape[0]):
qDCT.append(cv2.dct(np.float32(Y[i])))
qDCT = np.asarray(qDCT, dtype=np.float32)
qDCT = np.rint(qDCT - np.mean(qDCT, axis=0)).astype(np.int32)
f, a1 = plt.subplots(8, 8)
a1 = a1.ravel()
k = 0
# flag = True
for idx, ax in enumerate(a1):
k += 1
data = qDCT[:, int(idx/8), int(idx % 8)]
val, key = np.histogram(data, bins=np.arange(data.min(), data.max()+1))
# val, key = np.histogram(data, bins=np.arange(data.min(), data.max()+1), normed=True)
z = np.absolute(fftp.fft(val))
z = np.reshape(z, (len(z), 1))
rotz = np.roll(z, int(len(z)/2))
slope = rotz[1:] - rotz[:-1]
indices = [i+1 for i in range(len(slope)-1)
if slope[i] > 0 and slope[i+1] < 0]
peak_count = 0
for j in indices:
if rotz[j][0] > thres:
peak_count += 1
if(k==3):
if peak_count>=20: return True
else: return False
# flag = False