-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfn.py
227 lines (203 loc) · 9.12 KB
/
fn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import torch
import re
import os
import collections
from torch._six import string_classes, int_classes
import cv2
from opt import opt
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
import copy
RED = (0, 0, 255)
GREEN = (0, 255, 0)
BLUE = (255, 0, 0)
CYAN = (255, 255, 0)
YELLOW = (0, 255, 255)
ORANGE = (0, 165, 255)
PURPLE = (255, 0, 255)
numpy_type_map = {
'float64': torch.DoubleTensor,
'float32': torch.FloatTensor,
'float16': torch.HalfTensor,
'int64': torch.LongTensor,
'int32': torch.IntTensor,
'int16': torch.ShortTensor,
'int8': torch.CharTensor,
'uint8': torch.ByteTensor,
}
_use_shared_memory = True
def collate_fn(batch):
r"""Puts each data field into a tensor with outer dimension batch size"""
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
elem_type = type(batch[0])
if isinstance(batch[0], torch.Tensor):
out = None
if _use_shared_memory:
# If we're in a background process, concatenate directly into a
# shared memory tensor to avoid an extra copy
numel = sum([x.numel() for x in batch])
storage = batch[0].storage()._new_shared(numel)
out = batch[0].new(storage)
return torch.stack(batch, 0, out=out)
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
and elem_type.__name__ != 'string_':
elem = batch[0]
if elem_type.__name__ == 'ndarray':
# array of string classes and object
if re.search('[SaUO]', elem.dtype.str) is not None:
raise TypeError(error_msg.format(elem.dtype))
return torch.stack([torch.from_numpy(b) for b in batch], 0)
if elem.shape == (): # scalars
py_type = float if elem.dtype.name.startswith('float') else int
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
elif isinstance(batch[0], int_classes):
return torch.LongTensor(batch)
elif isinstance(batch[0], float):
return torch.DoubleTensor(batch)
elif isinstance(batch[0], string_classes):
return batch
elif isinstance(batch[0], collections.Mapping):
return {key: collate_fn([d[key] for d in batch]) for key in batch[0]}
elif isinstance(batch[0], collections.Sequence):
transposed = zip(*batch)
return [collate_fn(samples) for samples in transposed]
raise TypeError((error_msg.format(type(batch[0]))))
def collate_fn_list(batch):
img, inp, im_name = zip(*batch)
img = collate_fn(img)
im_name = collate_fn(im_name)
return img, inp, im_name
def vis_frame_fast(frame, im_res, format='coco'):
'''
frame: frame image
im_res: im_res of predictions
format: coco or mpii
return rendered image
'''
if format == 'coco':
l_pair = [
(0, 1), (0, 2), (1, 3), (2, 4), # Head
(5, 6), (5, 7), (7, 9), (6, 8), (8, 10),
(17, 11), (17, 12), # Body
(11, 13), (12, 14), (13, 15), (14, 16)
]
p_color = [(0, 255, 255), (0, 191, 255),(0, 255, 102),(0, 77, 255), (0, 255, 0), #Nose, LEye, REye, LEar, REar
(77,255,255), (77, 255, 204), (77,204,255), (191, 255, 77), (77,191,255), (191, 255, 77), #LShoulder, RShoulder, LElbow, RElbow, LWrist, RWrist
(204,77,255), (77,255,204), (191,77,255), (77,255,191), (127,77,255), (77,255,127), (0, 255, 255)] #LHip, RHip, LKnee, Rknee, LAnkle, RAnkle, Neck
line_color = [(0, 215, 255), (0, 255, 204), (0, 134, 255), (0, 255, 50),
(77,255,222), (77,196,255), (77,135,255), (191,255,77), (77,255,77),
(77,222,255), (255,156,127),
(0,127,255), (255,127,77), (0,77,255), (255,77,36)]
elif format == 'mpii':
l_pair = [
(8, 9), (11, 12), (11, 10), (2, 1), (1, 0),
(13, 14), (14, 15), (3, 4), (4, 5),
(8, 7), (7, 6), (6, 2), (6, 3), (8, 12), (8, 13)
]
p_color = [PURPLE, BLUE, BLUE, RED, RED, BLUE, BLUE, RED, RED, PURPLE, PURPLE, PURPLE, RED, RED,BLUE,BLUE]
else:
NotImplementedError
im_name = im_res['imgname'].split('/')[-1]
img = frame
for human in im_res['result']:
part_line = {}
kp_preds = human['keypoints']
kp_scores = human['kp_score']
kp_preds = torch.cat((kp_preds, torch.unsqueeze((kp_preds[5,:]+kp_preds[6,:])/2,0)))
kp_scores = torch.cat((kp_scores, torch.unsqueeze((kp_scores[5,:]+kp_scores[6,:])/2,0)))
# Draw keypoints
for n in range(kp_scores.shape[0]):
if kp_scores[n] <= 0.05:
continue
cor_x, cor_y = int(kp_preds[n, 0]), int(kp_preds[n, 1])
part_line[n] = (cor_x, cor_y)
cv2.circle(img, (cor_x, cor_y), 4, p_color[n], -1)
# Draw limbs
for i, (start_p, end_p) in enumerate(l_pair):
if start_p in part_line and end_p in part_line:
start_xy = part_line[start_p]
end_xy = part_line[end_p]
cv2.line(img, start_xy, end_xy, line_color[i], 2*(kp_scores[start_p] + kp_scores[end_p]) + 1)
return img
def vis_frame(frame, im_res, format='coco'):
'''
frame: frame image
im_res: im_res of predictions
format: coco or mpii
return rendered image
'''
if format == 'coco':
l_pair = [
(0, 1), (0, 2), (1, 3), (2, 4), # Head
(5, 6), (5, 7), (7, 9), (6, 8), (8, 10),
(17, 11), (17, 12), # Body
(11, 13), (12, 14), (13, 15), (14, 16)
]
p_color = [(0, 255, 255), (0, 191, 255),(0, 255, 102),(0, 77, 255), (0, 255, 0), #Nose, LEye, REye, LEar, REar
(77,255,255), (77, 255, 204), (77,204,255), (191, 255, 77), (77,191,255), (191, 255, 77), #LShoulder, RShoulder, LElbow, RElbow, LWrist, RWrist
(204,77,255), (77,255,204), (191,77,255), (77,255,191), (127,77,255), (77,255,127), (0, 255, 255)] #LHip, RHip, LKnee, Rknee, LAnkle, RAnkle, Neck
line_color = [(0, 215, 255), (0, 255, 204), (0, 134, 255), (0, 255, 50),
(77,255,222), (77,196,255), (77,135,255), (191,255,77), (77,255,77),
(77,222,255), (255,156,127),
(0,127,255), (255,127,77), (0,77,255), (255,77,36)]
elif format == 'mpii':
l_pair = [
(8, 9), (11, 12), (11, 10), (2, 1), (1, 0),
(13, 14), (14, 15), (3, 4), (4, 5),
(8, 7), (7, 6), (6, 2), (6, 3), (8, 12), (8, 13)
]
p_color = [PURPLE, BLUE, BLUE, RED, RED, BLUE, BLUE, RED, RED, PURPLE, PURPLE, PURPLE, RED, RED, BLUE, BLUE]
line_color = [PURPLE, BLUE, BLUE, RED, RED, BLUE, BLUE, RED, RED, PURPLE, PURPLE, RED, RED, BLUE, BLUE]
else:
raise NotImplementedError
im_name = im_res['imgname'].split('/')[-1]
img = frame
height,width = img.shape[:2]
img = cv2.resize(img,(int(width/2), int(height/2)))
for human in im_res['result']:
part_line = {}
kp_preds = human['keypoints']
kp_scores = human['kp_score']
kp_preds = torch.cat((kp_preds, torch.unsqueeze((kp_preds[5,:]+kp_preds[6,:])/2,0)))
kp_scores = torch.cat((kp_scores, torch.unsqueeze((kp_scores[5,:]+kp_scores[6,:])/2,0)))
# Draw keypoints
for n in range(kp_scores.shape[0]):
if kp_scores[n] <= 0.05:
continue
cor_x, cor_y = int(kp_preds[n, 0]), int(kp_preds[n, 1])
part_line[n] = (int(cor_x/2), int(cor_y/2))
bg = img.copy()
cv2.circle(bg, (int(cor_x/2), int(cor_y/2)), 2, p_color[n], -1)
# Now create a mask of logo and create its inverse mask also
transparency = max(0, min(1, kp_scores[n]))
img = cv2.addWeighted(bg, transparency, img, 1-transparency, 0)
# Draw limbs
for i, (start_p, end_p) in enumerate(l_pair):
if start_p in part_line and end_p in part_line:
start_xy = part_line[start_p]
end_xy = part_line[end_p]
bg = img.copy()
X = (start_xy[0], end_xy[0])
Y = (start_xy[1], end_xy[1])
mX = np.mean(X)
mY = np.mean(Y)
length = ((Y[0] - Y[1]) ** 2 + (X[0] - X[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(Y[0] - Y[1], X[0] - X[1]))
stickwidth = (kp_scores[start_p] + kp_scores[end_p]) + 1
polygon = cv2.ellipse2Poly((int(mX),int(mY)), (int(length/2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(bg, polygon, line_color[i])
#cv2.line(bg, start_xy, end_xy, line_color[i], (2 * (kp_scores[start_p] + kp_scores[end_p])) + 1)
transparency = max(0, min(1, 0.5*(kp_scores[start_p] + kp_scores[end_p])))
img = cv2.addWeighted(bg, transparency, img, 1-transparency, 0)
img = cv2.resize(img,(width,height),interpolation=cv2.INTER_CUBIC)
return img
def getTime(time1=0):
if not time1:
return time.time()
else:
interval = time.time() - time1
return time.time(), interval