-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain.py
233 lines (193 loc) · 8.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# ----------------------------------------------------------------------------
# Copyright (c) 2024 Amar Ali-bey
#
# https://github.com/amaralibey/Bag-of-Queries
#
# See LICENSE file in the project root.
# ----------------------------------------------------------------------------
import argparse
import torch
from lightning.pytorch import callbacks
from lightning.pytorch import Trainer, seed_everything
from lightning.pytorch.loggers import TensorBoardLogger
from src.utils import display_datasets_stats
from src.backbones import DinoV2, ResNet
from src.boq import BoQ
from src.model import BoQModel
from src.dataloaders.datamodule import VPRDataModule
class HyperParams:
def __init__(self):
## Backbone config:
self.backbone_name: str = "dinov2_vitb14" # resnet18, resnet50, dinov2_vits14, dinov2_vitl14
self.unfreeze_n_blocks: int = 2 # number of blocks to unfreeze in the backbone
## BoQ config:
self.channel_proj: int = 512
self.num_queries: int = 64
self.num_layers: int = 2
self.output_dim: int = 8192
## Datasets:
# NOTE: if you already have OpenVPRLab, you can set the path to the datasets from there
# otherwise use the dowload scripts in `scripts/` to download to `data/` folder
self.gsv_cities_path: str = "../OpenVPRLab/data/train/gsv-cities" # path to gsv-cities in OpenVPRLab
# gsv_cities_path: str = "./data/train/gsv-cities" # or path to gsv-cities in this project
self.cities: str | list = "all" # train on all cities
# self.cities: str | list = ["Bangkok", "Boston", "PRS"] # train on a subset of cities (check the gsv-cities folder)
self.val_sets: dict = {
"msls-val": "./data/val/msls-val", # path to the msls-val dataset
"pitts30k-val": "./data/val/pitts30k-val", # path to the pitts30k-val dataset
}
## Training config:
self.batch_size: int = 128 # batch size is the number of places per batch
self.img_per_place: int = 4 # number of images per place
self.max_epochs: int = 40
self.warmup_epochs: int = 10 # number of linear warmup epochs (not iterations)
self.lr: float = 1e-4 # learning rate
self.weight_decay: float = 1e-4
self.lr_mul: float = 0.1
self.milestones: list = [10, 20]
self.num_workers: int = 8
## misc
self.silent: bool = False # disable console output
self.compile: bool = False # compile the model using torch.compile() [experimental]
self.seed: int = 2024 # random seed for reproducibility
def train(hparams, dev_mode=False):
seed_everything(hparams.seed, workers=True)
# Instantiate the backbone and define the image size for training and validation
if "dinov2" in hparams.backbone_name:
backbone = DinoV2(backbone_name=hparams.backbone_name, unfreeze_n_blocks=hparams.unfreeze_n_blocks)
train_img_size = (224, 224)
val_img_size = (322, 322)
hparams.backbone_name = backbone.backbone_name # in case the user passed dinov2 without the version
hparams.train_img_size = train_img_size
hparams.val_img_size = val_img_size
elif "resnet" in hparams.backbone_name:
backbone = ResNet(backbone_name=hparams.backbone_name, unfreeze_n_blocks=hparams.unfreeze_n_blocks, crop_last_block=True)
train_img_size = (320, 320)
val_img_size = (384, 384)
hparams.train_img_size = train_img_size
hparams.val_img_size = val_img_size
else:
raise ValueError(f"backbone {hparams.backbone_name} not recognized or not implemented!")
# Instantiate BoQ aggregator
aggregator = BoQ(
in_channels=backbone.out_channels,
proj_channels=hparams.channel_proj,
num_queries=hparams.num_queries,
num_layers=hparams.num_layers,
row_dim=hparams.output_dim//hparams.channel_proj,
)
# Define the entire Lightning model for training and validation
model = BoQModel(
backbone,
aggregator,
lr=hparams.lr,
lr_mul=hparams.lr_mul,
weight_decay=hparams.weight_decay,
warmup_epochs=hparams.warmup_epochs,
milestones=hparams.milestones,
silent=hparams.silent,
)
if hparams.compile:
model = torch.compile(model)
# Define the datamodule for handling training and validation datasets
datamodule = VPRDataModule(
gsv_cities_path=hparams.gsv_cities_path,
cities=hparams.cities,
img_per_place=hparams.img_per_place,
val_sets=hparams.val_sets,
train_img_size=train_img_size,
val_img_size=val_img_size,
batch_size=hparams.batch_size,
num_workers=hparams.num_workers,
shuffle=False,
)
# If you want to display the datasets and training configs
if not hparams.silent:
datamodule.setup() # first init the datasets
display_datasets_stats(datamodule) # then display the stats
# we use Tensorboard for logging (integrated with PyTorch Lightning)
tensorboard_logger = TensorBoardLogger(
save_dir=f"./logs",
name=f"{hparams.backbone_name}",
default_hp_metric=False
)
# let's save all the hyperparameters to the the log file
# this will be saved in the logs folder
# e.g. ./logs/dinov2_vitb14/version_0/hparams.yaml
tensorboard_logger.log_hyperparams(hparams.__dict__)
# Define the checkpointing callback
checkpointing = callbacks.ModelCheckpoint(
monitor="msls-val/R@1", # <==== monitor the Recall@1 on the msls-val dataset
filename="epoch[{epoch:02d}]_R@1[{msls-val/R@1:.4f}]_R@5[{msls-val/R@5:.4f}]",
auto_insert_metric_name=False,
save_weights_only=False,
save_top_k=3,
mode="max",
)
# Define the progress bar callback
program_bar = callbacks.RichProgressBar()
# Lightning Trainer will take a list of callbacks
callback_list = [checkpointing]
if not hparams.silent:
callback_list.append(program_bar)
# Define the trainer
trainer = Trainer(
accelerator="gpu",
devices=[0],
logger=tensorboard_logger,
precision="16-mixed",
callbacks=callback_list,
max_epochs=hparams.max_epochs,
check_val_every_n_epoch=1,
num_sanity_val_steps=0,
log_every_n_steps=10,
fast_dev_run=dev_mode,
enable_model_summary=not hparams.silent,
enable_progress_bar=not hparams.silent,
)
# Train the model
trainer.fit(model=model, datamodule=datamodule)
def parse_args():
parser = argparse.ArgumentParser(description="Train parameters")
parser.add_argument("--dev", action="store_true", help="Enable fast dev run (one train and validation iteration).")
parser.add_argument("--silent", action="store_true", help="Disable console output.")
parser.add_argument('--compile', action='store_true', help='Compile the model using torch.compile()')
parser.add_argument("--seed", type=int, help="Random seed for reproducibility.")
parser.add_argument("--bs", type=int, help="Batch size.")
parser.add_argument("--lr", type=float, help="Learning Rate.")
parser.add_argument("--wd", type=float, help="Weight Decay.")
parser.add_argument('--epochs', type=int, help='Maximum number of epochs')
parser.add_argument('--warmup', type=int, help='Number of warmup epochs')
parser.add_argument("--nw", type=int, help="Numbers of workers.")
parser.add_argument('--backbone', type=str, help='Backbone model name [resnet50, dinov2]')
parser.add_argument('--unfreeze_n', type=int, help='Number of blocks to unfreeze in the backbone.')
parser.add_argument("--dim", type=int, help="Output dimensionality.")
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
hparams = HyperParams()
if args.seed:
hparams.seed = args.seed
if args.compile:
hparams.compile = True
if args.silent:
hparams.silent = True
if args.bs:
hparams.batch_size = args.bs
if args.lr:
hparams.lr = args.lr
if args.wd:
hparams.weight_decay = args.wd
if args.epochs:
hparams.max_epochs = args.epochs
if args.warmup:
hparams.warmup_epochs = args.warmup
if args.nw:
hparams.num_workers = args.nw
if args.backbone:
hparams.backbone_name = args.backbone
if args.unfreeze_n:
hparams.unfreeze_n_blocks = args.unfreeze_n
if args.dim:
hparams.output_dim = args.dim
train(hparams, dev_mode=args.dev)