-
Notifications
You must be signed in to change notification settings - Fork 14
/
main.py
321 lines (273 loc) · 13.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.optim import lr_scheduler
import utils
from dataloaders.GSVCitiesDataloader import GSVCitiesDataModule
from models import helper
class VPRModel(pl.LightningModule):
"""This is the main model for Visual Place Recognition
we use Pytorch Lightning for modularity purposes.
"""
def __init__(self,
#---- Backbone
backbone_arch='resnet50',
pretrained=True,
layers_to_freeze=1,
layers_to_crop=[],
#---- Aggregator
agg_arch='ConvAP', #CosPlace, NetVLAD, GeM, AVG
agg_config={},
#---- Train hyperparameters
lr=0.03,
optimizer='sgd',
weight_decay=1e-3,
momentum=0.9,
warmpup_steps=500,
milestones=[5, 10, 15],
lr_mult=0.3,
#----- Loss
loss_name='MultiSimilarityLoss',
miner_name='MultiSimilarityMiner',
miner_margin=0.1,
faiss_gpu=False
):
super().__init__()
self.encoder_arch = backbone_arch
self.pretrained = pretrained
self.layers_to_freeze = layers_to_freeze
self.layers_to_crop = layers_to_crop
self.agg_arch = agg_arch
self.agg_config = agg_config
self.lr = lr
self.optimizer = optimizer
self.weight_decay = weight_decay
self.momentum = momentum
self.warmpup_steps = warmpup_steps
self.milestones = milestones
self.lr_mult = lr_mult
self.loss_name = loss_name
self.miner_name = miner_name
self.miner_margin = miner_margin
self.save_hyperparameters() # write hyperparams into a file
self.loss_fn = utils.get_loss(loss_name)
self.miner = utils.get_miner(miner_name, miner_margin)
self.batch_acc = [] # we will keep track of the % of trivial pairs/triplets at the loss level
self.faiss_gpu = faiss_gpu
# ----------------------------------
# get the backbone and the aggregator
self.backbone = helper.get_backbone(backbone_arch, pretrained, layers_to_freeze, layers_to_crop)
self.aggregator = helper.get_aggregator(agg_arch, agg_config)
# the forward pass of the lightning model
def forward(self, x):
x = self.backbone(x)
x = self.aggregator(x)
return x
# configure the optimizer
def configure_optimizers(self):
if self.optimizer.lower() == 'sgd':
optimizer = torch.optim.SGD(self.parameters(),
lr=self.lr,
weight_decay=self.weight_decay,
momentum=self.momentum)
elif self.optimizer.lower() == 'adamw':
optimizer = torch.optim.AdamW(self.parameters(),
lr=self.lr,
weight_decay=self.weight_decay)
elif self.optimizer.lower() == 'adam':
optimizer = torch.optim.AdamW(self.parameters(),
lr=self.lr,
weight_decay=self.weight_decay)
else:
raise ValueError(f'Optimizer {self.optimizer} has not been added to "configure_optimizers()"')
scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=self.milestones, gamma=self.lr_mult)
return [optimizer], [scheduler]
# configure the optizer step, takes into account the warmup stage
def optimizer_step(self, epoch, batch_idx,
optimizer, optimizer_idx, optimizer_closure,
on_tpu, using_native_amp, using_lbfgs):
# warm up lr
if self.trainer.global_step < self.warmpup_steps:
lr_scale = min(1., float(self.trainer.global_step + 1) / self.warmpup_steps)
for pg in optimizer.param_groups:
pg['lr'] = lr_scale * self.lr
optimizer.step(closure=optimizer_closure)
# The loss function call (this method will be called at each training iteration)
def loss_function(self, descriptors, labels):
# we mine the pairs/triplets if there is an online mining strategy
if self.miner is not None:
miner_outputs = self.miner(descriptors, labels)
loss = self.loss_fn(descriptors, labels, miner_outputs)
# calculate the % of trivial pairs/triplets
# which do not contribute in the loss value
nb_samples = descriptors.shape[0]
nb_mined = len(set(miner_outputs[0].detach().cpu().numpy()))
batch_acc = 1.0 - (nb_mined/nb_samples)
else: # no online mining
loss = self.loss_fn(descriptors, labels)
batch_acc = 0.0
if type(loss) == tuple:
# somes losses do the online mining inside (they don't need a miner objet),
# so they return the loss and the batch accuracy
# for example, if you are developping a new loss function, you might be better
# doing the online mining strategy inside the forward function of the loss class,
# and return a tuple containing the loss value and the batch_accuracy (the % of valid pairs or triplets)
loss, batch_acc = loss
# keep accuracy of every batch and later reset it at epoch start
self.batch_acc.append(batch_acc)
# log it
self.log('b_acc', sum(self.batch_acc) /
len(self.batch_acc), prog_bar=True, logger=True)
return loss
# This is the training step that's executed at each iteration
def training_step(self, batch, batch_idx):
places, labels = batch
# Note that GSVCities yields places (each containing N images)
# which means the dataloader will return a batch containing BS places
BS, N, ch, h, w = places.shape
# reshape places and labels
images = places.view(BS*N, ch, h, w)
labels = labels.view(-1)
# Feed forward the batch to the model
descriptors = self(images) # Here we are calling the method forward that we defined above
loss = self.loss_function(descriptors, labels) # Call the loss_function we defined above
self.log('loss', loss.item(), logger=True)
return {'loss': loss}
# This is called at the end of eatch training epoch
def training_epoch_end(self, training_step_outputs):
# we empty the batch_acc list for next epoch
self.batch_acc = []
# For validation, we will also iterate step by step over the validation set
# this is the way Pytorch Lghtning is made. All about modularity, folks.
def validation_step(self, batch, batch_idx, dataloader_idx=None):
places, _ = batch
# calculate descriptors
descriptors = self(places)
return descriptors.detach().cpu()
def validation_epoch_end(self, val_step_outputs):
"""at the end of each validation epoch
descriptors are returned in their order
depending on how the validation dataset is implemented
for this project (MSLS val, Pittburg val), it is always references then queries.
For example, if we have n references and m queries, we will get
the descriptors for each val_dataset in a list as follows:
[R1, R2, ..., Rn, Q1, Q2, ..., Qm]
we then split it to references=[R1, R2, ..., Rn] and queries=[Q1, Q2, ..., Qm]
to calculate recall@K using the ground truth provided.
"""
dm = self.trainer.datamodule
# The following line is a hack: if we have only one validation set, then
# we need to put the outputs in a list (Pytorch Lightning does not do it presently)
if len(dm.val_datasets)==1: # we need to put the outputs in a list
val_step_outputs = [val_step_outputs]
for i, (val_set_name, val_dataset) in enumerate(zip(dm.val_set_names, dm.val_datasets)):
feats = torch.concat(val_step_outputs[i], dim=0)
num_references = val_dataset.num_references
num_queries = val_dataset.num_queries
ground_truth = val_dataset.ground_truth
# split to ref and queries
r_list = feats[ : num_references]
q_list = feats[num_references : ]
recalls_dict, predictions = utils.get_validation_recalls(r_list=r_list,
q_list=q_list,
k_values=[1, 5, 10, 15, 20, 25],
gt=ground_truth,
print_results=True,
dataset_name=val_set_name,
faiss_gpu=self.faiss_gpu
)
del r_list, q_list, feats, num_references, ground_truth
self.log(f'{val_set_name}/R1', recalls_dict[1], prog_bar=False, logger=True)
self.log(f'{val_set_name}/R5', recalls_dict[5], prog_bar=False, logger=True)
self.log(f'{val_set_name}/R10', recalls_dict[10], prog_bar=False, logger=True)
print('\n\n')
if __name__ == '__main__':
pl.utilities.seed.seed_everything(seed=1, workers=True)
# the datamodule contains train and validation dataloaders,
# refer to ./dataloader/GSVCitiesDataloader.py for details
# if you want to train on specific cities, you can comment/uncomment
# cities from the list TRAIN_CITIES
datamodule = GSVCitiesDataModule(
batch_size=100,
img_per_place=4,
min_img_per_place=4,
# cities=['London', 'Boston', 'Melbourne'], # you can sppecify cities here or in GSVCitiesDataloader.py
shuffle_all=False, # shuffle all images or keep shuffling in-city only
random_sample_from_each_place=True,
image_size=(320, 320),
num_workers=8,
show_data_stats=True,
val_set_names=['pitts30k_val', 'msls_val'], # pitts30k_val, pitts30k_test, msls_val, nordland, sped
)
# examples of backbones
# resnet18, resnet50, resnet101, resnet152,
# resnext50_32x4d, resnext50_32x4d_swsl , resnext101_32x4d_swsl, resnext101_32x8d_swsl
# efficientnet_b0, efficientnet_b1, efficientnet_b2
# swinv2_base_window12to16_192to256_22kft1k
model = VPRModel(
#-------------------------------
#---- Backbone architecture ----
backbone_arch='resnet50',
pretrained=True,
layers_to_freeze=2,
layers_to_crop=[], # 4 crops the last resnet layer, 3 crops the 3rd, ...etc
#---------------------
#---- Aggregator -----
# agg_arch='CosPlace',
# agg_config={'in_dim': 512,
# 'out_dim': 512},
# agg_arch='GeM',
# agg_config={'p': 3},
agg_arch='ConvAP',
agg_config={'in_channels': 2048,
'out_channels': 1024,
's1' : 2,
's2' : 2},
#-----------------------------------
#---- Training hyperparameters -----
#
lr=0.0002, # 0.03 for sgd
optimizer='adam', # sgd, adam or adamw
weight_decay=0, # 0.001 for sgd or 0.0 for adam
momentum=0.9,
warmpup_steps=600,
milestones=[5, 10, 15, 25],
lr_mult=0.3,
#---------------------------------
#---- Training loss function -----
# see utils.losses.py for more losses
# example: ContrastiveLoss, TripletMarginLoss, MultiSimilarityLoss,
# FastAPLoss, CircleLoss, SupConLoss,
#
loss_name='MultiSimilarityLoss',
miner_name='MultiSimilarityMiner', # example: TripletMarginMiner, MultiSimilarityMiner, PairMarginMiner
miner_margin=0.1,
faiss_gpu=False
)
# model params saving using Pytorch Lightning
# we save the best 3 models accoring to Recall@1 on pittsburg val
checkpoint_cb = ModelCheckpoint(
monitor='pitts30k_val/R1',
filename=f'{model.encoder_arch}' +
'_epoch({epoch:02d})_step({step:04d})_R1[{pitts30k_val/R1:.4f}]_R5[{pitts30k_val/R5:.4f}]',
auto_insert_metric_name=False,
save_weights_only=True,
save_top_k=3,
mode='max',)
#------------------
# we instanciate a trainer
trainer = pl.Trainer(
accelerator='gpu', devices=[0],
default_root_dir=f'./LOGS/{model.encoder_arch}', # Tensorflow can be used to viz
num_sanity_val_steps=0, # runs N validation steps before stating training
precision=16, # we use half precision to reduce memory usage (and 2x speed on RTX)
max_epochs=30,
check_val_every_n_epoch=1, # run validation every epoch
callbacks=[checkpoint_cb],# we run the checkpointing callback (you can add more)
reload_dataloaders_every_n_epochs=1, # we reload the dataset to shuffle the order
log_every_n_steps=20,
fast_dev_run=True # comment if you want to start training the network and saving checkpoints
)
# we call the trainer, and give it the model and the datamodule
# now you see the modularity of Pytorch Lighning?
trainer.fit(model=model, datamodule=datamodule)