-
Notifications
You must be signed in to change notification settings - Fork 0
/
RelatórioFinalMarkdown.Rmd
1282 lines (1006 loc) · 58.8 KB
/
RelatórioFinalMarkdown.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Lugar de mulher é na cozinha?"
author: "Maria Elisa Rocha Couto Gomes"
date: "28/10/2021"
output:
prettydoc::html_pretty:
theme: hpstr
highlight: github
---
## Prefácio
::: {style="text-align: justify"}
Este relatório foi produzido como trabalho final do curso "R para Ciências de Dados I", organizado pela [*Curso-R*](https://curso-r.com/).
Considerando que nós, alunos do curso, podíamos escolher o tema e os dados que fossem de nossa preferência, aproveitei esta oportunidade para analisar a divisão das tarefas domésticas e de cuidado não remuneradas sob uma perspectiva diferente daquela que tem me guiado em minha dissertação de mestrado. Enquanto, nela, tenho me dedicado à análise dos determinantes da alocação do tempo de homens e mulheres, em casais heterossexuais e homoafetivos, na realização destas tarefas, neste relatório, me voltarei às crenças e expectativas de gênero, alguns dos principais fatores que moldam nossos comportamentos perante os afazeres domésticos e de cuidado.
:::
## Introdução
::: {style="text-align: justify"}
Dito isto, gostaria de começar com a seguinte provocação: "lugar de mulher é na cozinha". Arrisco dizer que todo brasileiro, em algum momento de sua vida, já se deparou com este ditado popular. Suas poucas palavras servem como uma espécie de lembrete para o que significa "ser mulher" em uma sociedade altamente generificada: realizar as tarefas domésticas e de cuidado não remuneradas.
Tendo em mente as importantes mudanças que, desde a segunda metade do século XX, temos observado na família, principalmente, naquilo que diz respeito ao aumento da participação das mulheres no mercado de trabalho, neste relatório, tentarei avaliar o quão pertinente este ditado popular é entre mulheres e homens brasileiros casados no começo do século XXI. Em outras palavras, meu principal objetivo é responder à seguinte pergunta: no Brasil do século XXI, lugar de mulher é na cozinha ou onde ela quiser?
Procurando respondê-la, utilizarei dados do módulo [*Family and Changing Gender Values*](https://www.gesis.org/en/issp/modules/issp-modules-by-topic/family-and-changing-gender-roles/2002), coletados em 2002 como parte do *International Social Survey Programme* (ISSP). Além desta introdução, o presente trabalho contém as seguintes seções:
- Em **"Divisão Sexual do Trabalho: um obstáculo à verdadeira "Revolução de Gênero"?"**, discutirei brevemente a literatura sociológica sobre a divisão dos trabalhos domésticos e de cuidado não remunerados, dando maior atenção à hipótese derivada da perspectiva de gênero, uma vez que esta será a principal hipótese a ser abordada neste relatório.
- Em **"Metodologia"**, apresentarei o banco de dados e as variáveis utilizadas para a realização da análise aqui pretendida. Além disto, descreverei a estratégia metodológica adotada.
- Em **"Resultados"**, realizarei uma breve descrição acerca do perfil da amostra selecionada e os principais resultados obtidos durante a execução deste trabalho. Como também possuía o intuito de aprender a programar em R, os códigos também serão apresentados.
- Em **"Considerações finais"**, tecerei comentários gerais sobre aquilo que foi descoberto durante a elaboração deste relatório.
- Por fim, na seção **"Para saber mais: dicas de leituras**", listarei algumas referências bibliográficas que, embora não tenham sido devidamente citadas neste trabalho, têm guiado meus estudos sobre a divisão dos afazeres domésticos e de cuidado para aqueles que tiverem interesse em aprender mais sobre este tema.
:::
## Divisão Sexual do Trabalho: um obstáculo à verdadeira "Revolução de Gênero"?
::: {style="text-align: justify"}
A maioria dos estudos dedicados à investigação do trabalho doméstico não remunerado discute como é feita sua distribuição entre os membros de famílias formadas por casais heterossexuais. A partir de medidas, como, por exemplo, a quantidade de horas que as pessoas dedicam aos afazeres domésticos, tais pesquisas procuram identificar quais são os fatores que levam aos desequilíbrios entre seus membros.
Dentre as principais hipóteses explicativas disponíveis na literatura sobre este tema, observa-se a tendência de se atribuir suas causas às diferenças existentes entre estes homens e mulheres, como, por exemplo, de poder de negociação, renda, escolaridade, tempo livre disponível e, até mesmo, aos momentos do ciclo de vida em que se encontram. Tais abordagens recebem, respectivamente, os seguintes nomes: teoria da barganha, teoria do capital humano, hipótese da disponibilidade de tempo e perspectiva do ciclo de vida.
Ao comparar os resultados destes estudos, é possível observar um ponto comum: as mulheres, geralmente, se dedicam muito mais às tarefas domésticas do que seus respectivos maridos. Tem-se, portanto, que todas estas abordagens se mostram insuficientes se não consideramos o sistema de normas e expectativas de gênero. Este consistiria, justamente, nos aspectos psicológicos e sociológicos constituintes da identidade de gênero. Em outras palavras, podemos dizer que tal sistema se refere a um conjunto de obrigações decorrentes do "ser homem" e do "ser mulher", em sociedades em que tais categorias são rigidamente separadas e controladas.
Dentre elas, temos as obrigações decorrentes da divisão sexual do trabalho, que consiste em um fenômeno histórico e social por meio do qual se definiu a divisão social do trabalho, tendo como base as relações entre os sexos. Os principais aspectos deste fenômeno seriam a separação e a hierarquização. O primeiro aspecto, portanto, se refere à própria distinção dos trabalhos entre aqueles que, pertencentes à esfera produtiva, deveriam ser realizados por homens, e aqueles que, pertencentes à esfera reprodutiva, deveriam ser realizados por mulheres. Já o segundo, por sua vez, se traduz na ideia de que os "trabalhos de homem" são considerados superiores aos "trabalhos de mulher". No entanto, é importante observar que, se, por um lado, a divisão das tarefas domésticas é determinada conforme as normas de gênero da sociedade, por outro, é por meio de sua realização que os papéis, associados a elas, são demonstrados e reafirmados.
Embora muito tenha sido conquistado no Século XX, as mulheres continuam realizando grande parte do trabalho doméstico e de cuidado não remunerados. Talvez, o descompasso entre aquilo que, por elas, fora conquistado na esfera pública e a persistência das desigualdades na esfera privada, especialmente, as que dizem respeito à divisão das tarefas domésticas e cuidado, seja o principal entrave à igualdade de gênero. Tal constatação levou diversos autores a afirmarem que, durante este período, houve, na verdade, uma revolução "incompleta" ou "lenta" de genêro. Ambas possuindo a intenção de nos remeter à ideia de que, se, por um lado, foi promovida por mudanças significativas no comportamento das mulheres na esfera pública, por outro, é desacelarada pela persistência dos comportamentos tradicionais dos homens na esfera privada.
Este é, portanto, o "arcabouço teórico e empírico", a partir do qual, ao longo deste trabalho investigarei a que pé andavam, em 2002, as principais crenças que, supostamente, servem de base para tais comportamentos.
:::
## Metodologia
::: {style="text-align: justify"}
Nesta seção, apresentarei, em linhas gerais, o banco de dados e a estratégia metodológica utilizados para a realizaçao deste trabalho.
:::
### Banco de dados
::: {style="text-align: justify"}
Neste relatório, utilizei dados do módulo *Family and Changing Gender Values*, coletados em 2002 pelo *International Social Survey Programme* (ISSP), associação internacional independente, cujo principal objetivo é coletar periodicamente, em 57 países membros, informações sobre diferentes temas socialmente relevantes.
O módulo, aqui utilizado, contém informações sobre os valores familiares e de gênero dos seguintes países: Alemanha, Austrália, Austria, Bélgica, Brasil, Bulgaria, Chile, Chipre, Dinamarca, Eslovênia, Eslováquia, Espanha, Estados Unidos da América, Filipinas, Finlândia, França, Holanda, Húngria, Irlanda, Irlanda do Norte, Israel, Japão, Letônia, México, Noruega, Nova Zelândia, Pôlonia, Portugal, Reino Unido, República Tcheca, Rússia, Suécia, Suíça e Taiwan.
:::
```{r BancoDeDados, include=FALSE}
# Carregando os pacots que serão utilizados durante análise
library(foreign)
library(tidyverse)
library(tidyr)
library(ggplot2)
library(patchwork)
library(dplyr)
# Extraindo os dados do módulo "Family and Changing Gender Values" do ISSP de 2002
ZA3880_v1_1_0 <-
foreign::read.dta(
"Dados/ZA3880_v1-1-0.dta",
convert.dates = TRUE,
convert.factors = TRUE,
missing.type = FALSE,
convert.underscore = FALSE,
warn.missing.labels = TRUE
)
```
### Amostra selecionada
```{r FiltrosAmostra, include=FALSE}
# Aplicando os filtros para selecionar apenas os brasileiros casados
brasil <- ZA3880_v1_1_0 %>%
group_by(COUNTRY) %>%
filter(COUNTRY == "Brazil (BR)")
brasil_casados <- brasil %>%
group_by(v202) %>%
filter(v202 == "Marr,liv as mar")
n_total <- nrow(ZA3880_v1_1_0)
n_brasil <- nrow(brasil)
n_casados <- nrow(brasil_casados)
```
::: {style="text-align: justify"}
Para o módulo *"Family and Changing Gender Values"*, o ISSP entrevistou`r n_total`pessoas, com mais de 18 anos de idade, nos países anteriormente citados, das quais `r n_brasil` eram brasileiras. No entanto, neste relatório, apenas considerei os casos em que, além de brasileiros, os indivíduos também eram casados ou cohabitavam com seus respectivos cônjuges, sendo importante observar que, nesta pesquisa, apenas foram considerados casais heterossexuais. Uma vez que tais filtros foram feitos, restaram `r n_casados` casos na amostra.
Tal seleção se deu por dois motivos principais, sendo eles:
1) O fato de o Brasil se destacar enquanto um país em que, além de os valores familiares e de gênero permanecerem muito tradicionais, há elevadíssimas desigualdades de gênero e também severa escassez de políticas públicas por meio das quais o Estado busque contribuir para a redução de tais desigualdades, auxiliando, por exemplo, no provimento de cuidado para pessoas dependentes;
2) Na literatura sobre este tema, defende-se a ideia de que o casamento é a instituição generificada por excelência. Ou seja, segundo diversos autores, fazer parte de um casal heterossexual influenciaria, consideravelmente, os valores familiares e de gênero dos indivíduos.
:::
### Estratégia metodológica
Neste relatório, apresentarei apenas estatísticas descritivas a respeito da amostra selecionada. Considerando que seu perfil sociodemográfico pode vir a influenciar os resultados que obtivermos a respeito dos comportamentos e crenças de gênero de homens e mulheres, em primeiro lugar, analisarei as seguintes variáveis:
- Sexo;
- Idade;
- Cor/raça;
- Anos de escolaridade;
- Situação de emprego atual;
- Horas trabalhadas semanalmente;
- Rendimento;
- Renda familiar;
- Número de filhos de 0 a 6 anos de idade que residem no mesmo domicílio;
- Número de filhos com 7 anos de idade ou mais que residem no mesmo domicílio.
Em seguida, observarei em que medida homens e mulheres concordam ou discordam das seguintes frases:
- "Trabalhar é bom, mas o que a maioria das mulheres realmente quer é ter um lar e filhos";
- "Ser dona de casa é tão gratificante quanto trabalhar fora";
- "O trabalho do homem é ganhar dinheiro, o trabalho da mulher é cuidar da casa e da família";
- "Os homens deveriam assumir mais trabalhos domésticos do que fazem atualmente";
- "Os homens deveriam cuidar mais das crianças do que cuidam atualmente";
Por fim, também analisarei como os entrevistados e seus respectivos cônjuges dividem os afazeres domésticos e quais são suas percepções a respeito desta dinâmica, a frequência com que esta é alvo de conflitos e sua satisfação (ou insatisfação) com sua vida familiar. Isto será feito a partir das seguintes perguntas:
- "Na casa do senhor(a), quem faz as seguintes coisas:
- Lava e passa roupa;
- Faz pequenos consertos na casa;
- Cuida dos familiares doentes, velhos e incapacitados;
- Compra comida (faz supermercado);
- Limpa a casa;
- Cozinha (prepara a comida);
- Lava os pratos";
- "Em média, qual o número de horas por semana o senhor(a) gasta fazendo trabalhos domésticos, sem incluir cuidar das crianças e se divertir";
- "Qual das seguintes opções melhor se aplica à divisão do trabalho doméstico entre seu(sua) cônjuge e o(a) senhor(a)?
- "Com que frequência, o senhor(a) e seu(sua) cônjuge discordam da divisão do trabalho de casa?";
- "Considerando sua vida familiar, você está?".
```{r SeleçãoVariáveis, include=FALSE}
# Mantendo apenas as minhas varáveis de interesse no banco de dados
brasil_casados_vs <- brasil_casados %>%
select(
v3,
COUNTRY,
v7,
v8,
v11,
v12,
v13,
v30,
v31,
v32,
v33,
v34,
v35,
v36,
v38,
v39,
v40,
v44,
v45,
v48,
v50,
v51,
v54,
v66,
v67,
v201,
v200,
v202,
v204,
v239,
v240,
v249,
v250,
v359)
```
```{r ModificandoNomesDasVariáveis, include=FALSE}
# Modificando o nome das variáveis para facilitar a identificação das mesmas
names(brasil_casados_vs)[names(brasil_casados_vs) == "v3"] <-
"identificador"
names(brasil_casados_vs)[names(brasil_casados_vs) == "COUNTRY"] <-
"país"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v7"] <-
"mulher_casa_filhos"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v8"] <-
"casa_realização"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v11"] <-
"trab_homem_mulher"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v12"] <-
"homem_domésticas"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v13"] <-
"homem_cuidado"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v30"] <-
"lavar_roupa"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v31"] <-
"pequenos_reparos"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v32"] <-
"doença_parentes"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v33"] <-
"compras"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v34"] <-
"limpeza"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v35"] <-
"comida"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v36"] <-
"horas_trab_dom"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v38"] <-
"divisão_tar_dom"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v39"] <-
"conflito_tar_dom"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v40"] <-
"decisões_crianças"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v44"] <-
"sobrecarga_tar_dom"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v45"] <-
"stress_casa"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v48"] <-
"cansaço_tar_dom"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v50"] <-
"cansaço_dom_trab"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v51"] <-
"concentração_trab"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v54"] <-
"familia_satisfação"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v66"] <-
"filhos_maiores"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v67"] <-
"crianças_pequenas"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v201"] <-
"idade"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v200"] <-
"sexo"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v202"] <-
"status_marital"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v204"] <-
"anos_escolaridade"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v239"] <-
"emprego_status"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v240"] <-
"horas_trab"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v249"] <-
"rendimento"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v250"] <-
"renda_familiar"
names(brasil_casados_vs)[names(brasil_casados_vs) == "v359"] <-
"identidade_etnica"
```
## Resultados
::: {style="text-align: justify"}
Nesta seção, serão apresentados os principais resultados obtidos.
Em um primeiro momento, farei uma breve descrição do perfil sóciodemográfico da amostra selecionada, explorando as seguintes características: sexo, idade, cor/raça, escolaridade, situação de ocupação, rendimento, número de filhos residentes no mesmo domicílio.
Em seguida, explorarei dados referentes aos valores familiares e de gênero e à divisão dos afazeres domésticos segundo o sexo dos entrevistados.
:::
### Uma breve descrição da amostra
#### Sexo
::: {style="text-aling: justify"}
Como é possível observar a partir da leitura da Figura 1, em nossa amostra, 50,46% dos entrevistados eram mulheres, enquanto 49,54% eram homens. Isto nos indica que a distribuição relativa dos entrevistados segundo seu sexo segue aquilo que era esperado, de acordo com a presença de homens e mulheres na população brasileira em geral.
:::
```{r DSexo}
# Distribuição relativa de brasileiros casados por sexo
sexo_grafico <- brasil_casados_vs %>%
group_by(sexo) %>%
summarise(n = n()) %>%
mutate(freq_sexo = n / sum(n)) %>%
mutate(freq_sexo = freq_sexo * 100) %>%
mutate(freq_sexo = round(freq_sexo, 2)) %>%
ungroup() %>%
ggplot() +
geom_col(aes(x = sexo, y = freq_sexo, fill = sexo), show.legend = TRUE) +
geom_label(aes(x = sexo, y = freq_sexo,
label = freq_sexo)) +
scale_fill_manual(
labels = c("Masculino", "Femino"),
values = c("lightblue3", "hotpink1")
) +
labs(
y = "Frequência relativa",
fill = "Sexo",
title = "Figura 1- Distribuição relativa de brasileiros casados por sexo",
caption = "Fonte: ISSP, 2002."
) +
theme_minimal()+
theme(
axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.title.y = element_text(size = 8),
axis.text.x = element_blank(),
plot.title = element_text(hjust = 0.5, size = 12, face = "bold"),
plot.caption = element_text(hjust = 0.5)
)
print(sexo_grafico)
```
#### Idade
Já a Figura 2 contem a distribuição da idade dos brasileiros casados de acordo com seu sexo. Sendo assim, a partir dela, é possível perceber que, em nossa amostra, as mulheres são ligeiramente mais novas que os homens, uma vez que, para elas, a mediana desta variável foi, aproximadamente, 39 anos, enquanto, para os homens, foi 43 anos.
No entanto, considerando esta é uma medida extremamente sensível a valores discrepantes, é interessante ressaltar que, por um lado, o valor da mediana dos homens pode estar sendo influenciada pelo valor máximo de 85 anos encontrado na amostra. Por outro, a das mulheres pode estar sendo afetada pelo valor mínimo de 18 anos.
```{r DIdade}
# Distribuição dos brasileiros casados por idade, de acordo com seu sexo
idade_sexo <- brasil_casados_vs %>%
group_by(sexo) %>%
ggplot() +
geom_boxplot(aes(x = sexo, y = idade, fill = sexo)) +
scale_y_continuous(breaks = c(0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85)) +
scale_fill_manual(labels = c("Masculino", "Femino"),
values = c("lightblue3", "hotpink1")) +
labs(fill = "Sexo",
title = "Figura 2 - Distribuição da idade por sexo para brasileiros casados",
caption = "Fonte: ISSP, 2002.")+
theme_minimal() +
theme(axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
plot.title = element_text(hjust = 0.5, size = 12, face = "bold"),
plot.caption = element_text(hjust = 0.5))
print(idade_sexo)
```
#### Autodeclaração de cor/raça
A Figura 3 possui a distribuição relativa dos brasileiros casados de acordo com sua autodeclaração de cor/raça. Assim como na população brasileira em geral, na amostra selecionada, a maioria, 49,54%, dos entrevistados se declarou branca. O segundo grupo racial a apresentar maior frequência relativa foi o grupo de pardos, representando 33,6% dos brasileiros casados. Os entrevistados pretos, indígenas e amarelos, por sua vez, somaram 9,24%, 2,66% e 1,85%, respectivamente.
Além da frequência relativa dos grupos anteriormente mencionados, na Figura 3, também é possível observar que 3,12% dos entrevistados preferiram não declarar sua cor/raça.
```{r DRaça}
# Distribuição relativa dos brasileiros casados de acordo com sua autodeclaração de cor/raça
# OBS.: Antes de elaborar o gráfico, a variável foi modificada para que as categorias correspondessem àquelas utilizadas pelo IBGE
raca <- brasil_casados_vs %>%
mutate(identidade_etnica = case_when(
is.na(identidade_etnica) ~ "Não declarada",
identidade_etnica == "American Indian,Navajo,Ind.Dialect" ~ "Indígena",
identidade_etnica == "Asia,other Asian" ~ "Amarela",
identidade_etnica == "Black/African/Carribean,No-Spanish" ~ "Preta",
identidade_etnica == "Europe,White/European" ~ "Branca",
identidade_etnica == "Other,mixed origin,one-non-swedish" ~ "Parda"
)) %>%
group_by(identidade_etnica) %>%
summarise(n = n(), na.rm = TRUE) %>%
mutate(freq_raca = n/sum(n)) %>%
mutate(freq_raca = freq_raca*100) %>%
mutate(freq_raca = round(freq_raca, 2)) %>%
ungroup() %>%
ggplot() +
geom_col(aes(x = identidade_etnica, y = freq_raca, fill = identidade_etnica)) +
geom_label(aes(x = identidade_etnica, y = freq_raca,
label = freq_raca)) +
scale_fill_manual(values = c("darksalmon", "aquamarine", "darkseagreen1", "grey", "khaki1", "plum2")) +
labs(y = "Percentual de entrevistados", fill = "Cor/raça",
title = "Figura 3 - Distribuição relativa da amostra por cor/raça",
caption = "Fonte: ISSP, 2002.") +
theme_minimal() +
theme(
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
plot.title = element_text(size = 12, face = "bold", hjust = 0.5),
plot.caption = element_text(hjust = 0.5))
print(raca)
```
#### Anos de escolaridade
Na Figura 4, é possível observar a distribuição dos anos de escolaridade que possuem os brasileiros casados de acordo com seu sexo. Neste gráfico, o eixo y contém quatro númeris diferentes, cada um deles correspondentes à quantidade de anos de estudos necessários para a finalização de importantes níveis educacionais. Enquanto 8 anos representa a finalização do Ensino Fundamental, 11 anos corresponde ao encerramento do Ensino Médio e 15 anos à conclusão do Ensino Superior.
Posto isto, a partir da leitura da Figura 4, tem-se que as mulheres, como mediana, apresentaram, aproximadamente, 6 anos de escolaridade, enquanto os homens obtiveram apenas 5 anos. Embora ambos valores sejam extremamente baixos, eles refletem aquilo que é afirmado pela literatura sociológica a respeito das desigualdades educacionais. No Brasil, as mulheres são, geralmente, mais escolarizadas do que os homens.
```{r DEscolaridade}
# Distribuição de brasileiros casados por anos de escolaridade, de acordo com seu sexo
escolaridade_sexo <- brasil_casados_vs %>%
mutate(anos_escolaridade = na_if(anos_escolaridade, 97)) %>%
group_by(sexo) %>%
ggplot() +
geom_boxplot(aes(x = sexo, y = anos_escolaridade, fill = sexo)) +
scale_y_continuous(breaks = c(0, 8, 11, 15)) +
scale_fill_manual(
labels = c("Masculino", "Femino"),
values = c("lightblue3", "hotpink1")
) +
labs(
y = "Anos de escolaridade",
fill = "Sexo",
title = "Figura 4 - Distribuição dos anos de escolaridade",
caption = "Fonte: ISSP, 2002."
) +
theme_minimal()+
theme(
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
plot.title = element_text(size = 11, face = "bold", hjust = 0.5),
plot.caption = element_text(hjust = 0.5)
)
print(escolaridade_sexo)
```
#### Situação de emprego
Assim como a Figura 4 anteriormente apresentados, a Figura 5 nos revela importantes diferenças existentes entre os homens e mulheres que compõem a amostra selecionada. Ao nos mostrar sua distribuição relativa por situação de emprego de acordo com sexo, a Figura 5 demonstra que, enquanto 64% dos homens possuem empregos em tempo integral, apenas 27,2% das mulheres se encontram na mesma situação.
Em contrapartida, se, por um lado, 50,88% das mulheres eram donas de casa, por outro, apenas 0,81% dos homens também o eram. Tais resultados, embora sejam simplesmente descritivos, nos indicam que, em 2002, a maioria das mulheres casadas assumiam as tarefas de manutenção da casa e de cuidados com outros moradores como sua principal atividade.
Uma vez que o regime de emprego adotado também pode nos indicar uma tentativa de conciliação entre as esferas produtiva e reprodutiva, também merece destaque a pequena porcentagem de mulheres que possuíam empregos em tempo parcial, 8,82%. Em outras palavras, os resultados aqui discutidos apontam, em primeiro lugar, para uma predominância das mulheres casadas nas atividades domésticas, em detrimento do mercado de trabalho.
Entre os homens, também se destacaram aqueles que estavam aposentados e aqueles que trabalhavam em tempo parcial, correspondendo a 22,58% e 6,72% respectivamente.
Tanto entre os homens quanto entre as mulheres, os desempregados correspondiam, aproximadamente, a apenas 3,3%.
```{r DEmprego}
# Distribuição dos brasileiros casados por situação de emprego, de acordo com seu sexo
emprego_sexo_grafico <- brasil_casados_vs %>%
mutate(emprego_status = case_when(
emprego_status == "Employed-full time" ~ "Trab. tempo integral",
emprego_status == "Housewife,home duties" ~ "Dona de casa",
emprego_status == "Retired" ~ "Aposent.",
emprego_status == "Helping family member" ~ "Parente que ajuda",
emprego_status == "Oth, not i labor force" ~ "Outro",
emprego_status == "Unemployed" ~ "Desempreg.",
emprego_status == "Permanently disabled" ~ "PCD",
emprego_status == "Employed-part time" ~ "Trab. tempo parcial",
emprego_status == "Studt,school,vct.trng" ~ "Estudante"
)) %>%
mutate(sexo = case_when(
sexo == "Male" ~ "Masculino",
sexo == "Female" ~ "Feminino",
)) %>%
filter(!is.na(emprego_status)) %>%
group_by(sexo, emprego_status) %>%
summarize(n = n()) %>%
mutate(emprego_sexo = 100*n/sum(n)) %>%
ggplot(aes(x = sexo, y = emprego_sexo, fill = emprego_status)) +
geom_bar(stat = "identity", show.legend = F) +
facet_grid(~ emprego_status, labeller = label_wrap_gen(width = 12)) +
coord_flip() +
ylim(c(0, 90)) +
geom_text(aes(label = round(emprego_sexo, 2)), hjust = -.1) +
theme(strip.text = element_text(size = 12)) +
scale_fill_manual(values = c("lightsalmon", "aquamarine", "darkseagreen1", "grey", "khaki1", "plum2")) +
labs(title = "Figura 5 - Distribuição relativa dos brasileiros casados por situação de emprego de acordo com seu sexo",
caption = "Fonte: ISSP, 2002.")+
theme_minimal() +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank(),
plot.title = element_text(size = 12, face = "bold", hjust = 0.5),
plot.caption = element_text(hjust = 0.5))
print(emprego_sexo_grafico)
```
#### Rendimento
A Figura 6 se volta a outra dimensão das desigualdades de gênero amplamente discutidas na Sociologia: os diferentes rendimentos médios que homens e mulheres obtêm no mercado de trabalho. Sendo assim, a partir de sua leitura, percebe-se que as mulheres, mesmo sendo mais escolarizadas que os homens, recebem, em média, R$ 225,25 mensais a menos.
Este resultado é um indicativo de que, mesmo quando inseridas no mercado de trabalho, as mulheres enfrentam uma série de obstáculos que as levam a receber menos que os homens. Além de, geralmente, possuírem ocupações de menos prestígio social e também menor valorização, mulheres também enfrentam diferentes tipos de discriminação, dentre os quais estão, por exemplo, a discriminação decorrente do fato de serem mães ou, até mesmo, da possibilidade de se tornarem mães, por estarem em idade reprodutiva.
```{r DRendimento}
# Rendimento médio dos brasileiros casados de acordo com seu sexo
rendimento_médio_gráfico <- brasil_casados_vs %>%
group_by(sexo) %>%
summarize(rendimento_medio = mean(rendimento, na.rm = TRUE)) %>%
mutate(rendimento_medio = round(rendimento_medio, 2)) %>%
ggplot() +
geom_col(aes(x = sexo, y = rendimento_medio, fill = sexo), show.legend = TRUE) +
geom_label(aes(x = sexo, y = rendimento_medio, label = rendimento_medio))+
scale_y_continuous(breaks = c(100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100)) +
scale_fill_manual(labels = c("Masculino", "Femino"),
values = c("lightblue3", "hotpink1")) +
labs(fill = "Sexo",
title = "Figura 6 - Rendimento mensal médio em R$ por sexo",
caption = "Fonte: ISSP, 2002.")+
theme_minimal() +
theme(
axis.title.y = element_blank(),
axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
plot.title = element_text(size = 12, face = "bold", hjust = 0.5),
plot.caption = element_text(hjust = 0.5))
print(rendimento_médio_gráfico)
```
#### Filhos
Dentre as características sociodemográficas da amostra aqui apresentadas, as últimas serão as quantidades de filhos com até 6 anos e com mais de 7 anos de idade.
Segundo a literatura sociológica sobre a divisão dos afazeres domésticos e de cuidado, a presença de filhos no domicílio é um fator extremamente importante para a compreensão deste fenômeno, uma vez que, dependendo de sua idade e de seu sexo, eles podem tanto aumentar quanto diminuir o tempo que os indivíduos dedicam à realização destas atividades.
Sendo assim, na Figura 7, é possível observar que mais de 70% dos entrevistados residem no mesmo domicílio que, pelo menos, 1 filho com menos de 6 anos, enquanto, na Figura 8, percebemos que 40% deles convive com, ao menos, 1 filho com mais de 7 anos de idade.
```{r DFilhosPequenos}
# Distribuição de brasileiros casados de acordo com o número filhos com mais de 7 anos no domicílio
# OBS.: antes de elaborar o gráfico, a variável referente ao número de filhos com menos de 6 anos (categórica) foi transformada em variável numérica.
filhos_pequenos_gráfico <- brasil_casados_vs %>%
mutate(crianças_pequenas = case_when(
crianças_pequenas == "1 child" ~ 1,
crianças_pequenas == "2 children" ~ 2,
crianças_pequenas == "3 children" ~ 3,
crianças_pequenas == "4 children" ~ 4,
crianças_pequenas == "5 children" ~ 5,
crianças_pequenas == "6 children" ~ 6,
crianças_pequenas== "7 children" ~ 7,
crianças_pequenas == "8 children" ~ 8,
crianças_pequenas == "9 children" ~ 9,
crianças_pequenas == "10 children" ~ 10)) %>%
filter(!is.na(crianças_pequenas)) %>%
group_by(crianças_pequenas) %>%
summarize(n = n()) %>%
mutate(freq_crianças_pequenas = n*100/sum(n)) %>%
mutate(freq_crianças_pequenas = round(freq_crianças_pequenas, 2)) %>%
ggplot() +
geom_col(mapping = aes(x = crianças_pequenas, y = freq_crianças_pequenas, fill = crianças_pequenas), show.legend = TRUE) +
scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)) +
scale_x_continuous(breaks = c(1, 2, 3, 4, 5)) +
scale_fill_gradient(low = "tomato", high = "tomato4",
breaks = c(2, 3, 4)) +
labs(y = "Frequência relativa", fill = "Número de filhos com \nmenos de 6 anos",
title = "Figura 7 - Distribuição relativa dos brasileiros casados \nde acordo com o número de filhos com menos de \n6 anos no domicílio",
caption = "Fonte: ISSP, 2002")+
theme_minimal() +
theme(
axis.title.x = element_blank(),
axis.title.y = element_blank(),
plot.title = element_text(size = 12, face = "bold", hjust = 0.5),
plot.caption = element_text(hjust = 0.5))
print(filhos_pequenos_gráfico)
```
```{r DFilhosMaiores}
# Distribuição de brasileiros casados de acordo com o número filhos com mais de 7 anos no domicílio
# OBS.: antes de elaborar o gráfico, a variável referente ao número de filhos com mais de 7 anos (categórica) foi transformada em variável numérica.
filhos_maiores_gráfico <- brasil_casados_vs %>%
mutate(filhos_maiores = case_when(
filhos_maiores == "1 child" ~ 1,
filhos_maiores == "2 children" ~ 2,
filhos_maiores == "3 children" ~ 3,
filhos_maiores == "4 children" ~ 4,
filhos_maiores == "5 children" ~ 5,
filhos_maiores == "6 children" ~ 6,
filhos_maiores == "7 children" ~ 7,
filhos_maiores == "8 children" ~ 8,
filhos_maiores == "9 children" ~ 9,
filhos_maiores == "10 children" ~ 10)) %>%
filter(!is.na(filhos_maiores)) %>%
group_by(filhos_maiores) %>%
summarize(n = n()) %>%
mutate(freq_filhos_maiores = n*100/sum(n)) %>%
mutate(freq_filhos_maiores = round(freq_filhos_maiores, 2)) %>%
ggplot() +
geom_col(mapping = aes(x = filhos_maiores, y = freq_filhos_maiores, fill = filhos_maiores), show.legend = TRUE) +
scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)) +
scale_x_continuous(breaks = c(0, 2, 4, 6, 8, 10)) +
scale_fill_gradient(low = "palegreen1", high = "darkseagreen4",
breaks = c(0, 2, 4, 6, 8)) +
labs(y = "Frequência relativa", fill = "Número de filhos com mais de 7 anos",
title = "Figura 8 - Distribuição relativa de brasileiros casados de acordo com o número de filhos com mais de 7 anos que residem no domicílio",
caption = "Fonte: ISSP, 2002")+
theme_minimal() +
theme(axis.title.x = element_blank(),
axis.title.y = element_blank(),
plot.title = element_text(size = 12, face = "bold", hjust = 0.5),
plot.caption = element_text(hjust = 0.5))
print(filhos_maiores_gráfico)
```
### "Lugar de mulher é na cozinha"?
#### Opiniões sobre os pápeis de gênero
```{r OQueMulheresQuerem}
# Distribuição relativa de brasileiros casados de acordo com o grau de concordância com a frase "Tudo bem trabalhar fora de casa, mas o que as mulheres realmente querem são um lar e filhos" por sexo
# Obs.: Antes de elaborar o gráfico, foi necessário criar o labeller "opiniao" para que pudéssemos traduzir as categorias desta variável.
opiniao <- list(
"Strongly Agree" = "Concordo totalmente",
"Agree" = "Concordo",
"Neither agree nor disagree" = "Não concordo nem discordo",
"Disagree" = "Discordo",
"Strongly disagree" = "Discordo totalmente")
opiniao_labeller <- function(variable, value){
return(opiniao[value])
}
casa_filhos_sexo <- brasil_casados_vs %>%
filter(!is.na(mulher_casa_filhos)) %>%
group_by(sexo, mulher_casa_filhos) %>%
summarise(n = n()) %>%
mutate(freq_casa_filhos = n*100/sum(n)) %>%
ggplot(aes(x = sexo, y = freq_casa_filhos, fill = sexo)) +
geom_bar(stat = "identity", show.legend = TRUE) +
facet_grid(mulher_casa_filhos ~., labeller = as_labeller(opiniao_labeller, label_wrap_gen(width = 15, )))+
coord_flip() +
ylim(c(0, 90)) +
geom_text(aes(label = round(freq_casa_filhos, 2)), hjust = -.1) +
scale_fill_manual(label = c("Masculino", "Feminino"), values = c("lightblue3", "hotpink1")) +
theme(strip.text = element_text(size = 12)) +
labs(title = "Trabalhar é bom, mas o que a maioria das mulheres realmente quer é ter um lar e filhos",
caption = "Fonte: ISSP, 2002.")+
theme_minimal() +
theme(axis.title.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.x = element_blank(),
strip.text.y = element_text(angle = 0),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 1),
plot.caption = element_text(hjust = 0.5))
print(casa_filhos_sexo)
```
```{r Realização}
# Distribuição relativa dos brasileiros casados de acordo com o grau de concordância com a frase "Ser dona de casa é tão gratificante quanto ter um emprego" por sexo
casa_realização_sexo <- brasil_casados_vs %>%
filter(!is.na(casa_realização)) %>%
group_by(sexo, casa_realização) %>%
summarise(n = n()) %>%
mutate(freq_casa_realização = n*100/sum(n)) %>%
ggplot(aes(x = sexo, y = freq_casa_realização, fill = sexo)) +
geom_bar(stat = "identity", show.legend = TRUE) +
facet_grid(casa_realização ~., labeller = as_labeller(opiniao_labeller, label_wrap_gen(width = 15, )))+
coord_flip() +
ylim(c(0, 90)) +
geom_text(aes(label = round(freq_casa_realização, 2)), hjust = 1) +
scale_fill_manual(label = c("Masculino", "Feminino"), values = c("lightblue3", "hotpink1")) +
theme(strip.text = element_text(size = 12)) +
labs(title = "Ser dona de casa é tão gratificante quanto ter um emprego",
caption = "Fonte: ISSP, 2002.")+
theme_minimal() +
theme(axis.title.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.x = element_blank(),
strip.text.y = element_text(angle = 0),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 1),
plot.caption = element_text(hjust = 0.5))
print(casa_realização_sexo)
```
```{r Deveres}
# Distribuição relativa de brasileiros casados de acordo com o grau de concordância com a frase "O dever do homem é ganhar dinheiro, o dever da mulher é cuidar da casa e da família" por sexo
dever_sexo <- brasil_casados_vs %>%
filter(!is.na(trab_homem_mulher)) %>%
group_by(sexo, trab_homem_mulher) %>%
summarise(n = n()) %>%
mutate(freq_dever = n*100/sum(n)) %>%
ggplot(aes(x = sexo, y = freq_dever, fill = sexo)) +
geom_bar(stat = "identity", show.legend = TRUE) +
facet_grid(trab_homem_mulher ~., labeller = as_labeller(opiniao_labeller, label_wrap_gen(width = 15, )))+
coord_flip() +
ylim(c(0, 90)) +
geom_text(aes(label = round(freq_dever, 2)), hjust = -.1) +
scale_fill_manual(label = c("Masculino", "Feminino"), values = c("lightblue3", "hotpink1")) +
theme(strip.text = element_text(size = 12)) +
labs(title = "\"O dever do homem é prover e o da mulher é cuidar",
fill = "Sexo",
caption = "Fonte: ISSP, 2002.")+
theme_minimal() +
theme(axis.title.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.x = element_blank(),
strip.text.y = element_text(angle = 0),
plot.title = element_text(hjust = 0.5, size = 12, face = "bold", ),
plot.subtitle = element_text(hjust = 1, size = 8),
plot.caption = element_text(hjust = 0.5))
print(dever_sexo)
```
```{r HomensMaisTrabDom}
# Distribuição relativa de brasileiros casados de acordo com o grau de concordância com a frase "Homens devem participar mais das tarefas domésticas do que participam atualmente" por sexo
homem_dom_sexo <- brasil_casados_vs %>%
filter(!is.na(homem_domésticas)) %>%
group_by(sexo, homem_domésticas) %>%
summarise(n = n()) %>%
mutate(freq_homem_dom = n*100/sum(n)) %>%
ggplot(aes(x = sexo, y = freq_homem_dom, fill = sexo)) +
geom_bar(stat = "identity", show.legend = TRUE) +
facet_grid(homem_domésticas ~., labeller = as_labeller(opiniao_labeller, label_wrap_gen(width = 12)))+
coord_flip() +
ylim(c(0, 90)) +
geom_text(aes(label = round(freq_homem_dom, 2)), hjust = -.1, size = 3.5) +
scale_fill_manual(label = c("Masculino", "Feminino"), values = c("lightblue3", "hotpink1")) +
labs(title = "\"Homens deveriam fazer mais tarefas domésticas\"?",
fill = "Sexo",
caption = "Fonte: ISSP, 2002.")+
theme_minimal() +
theme(axis.title.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.x = element_blank(),
strip.text.y = element_text(angle = 0, size = 10),
plot.title = element_text(hjust = 0.5, size = 12, face = "bold"),
plot.subtitle = element_text(hjust = 1, size = 8),
plot.caption = element_text(hjust = 0.5))
print(homem_dom_sexo)
```
```{r HomensCuidarMais}
# Distribuição relativa de brasileiros casados de acordo com a grau de concordância com a frase "Homens deveriam participar mais do cuidado com as crianças" por sexo
homem_cuidado_sexo <- brasil_casados_vs %>%
filter(!is.na(homem_cuidado)) %>%
group_by(sexo, homem_cuidado) %>%
summarise(n = n()) %>%
mutate(freq_homem_cuidado = n*100/sum(n)) %>%
ggplot(aes(x = sexo, y = freq_homem_cuidado, fill = sexo)) +
geom_bar(stat = "identity", show.legend = TRUE) +
facet_grid(homem_cuidado ~., labeller = as_labeller(opiniao_labeller, label_wrap_gen(width = 15, )))+
coord_flip() +
ylim(c(0, 90)) +
geom_text(aes(label = round(freq_homem_cuidado, 2)), hjust = -.1) +
scale_fill_manual(label = c("Masculino", "Feminino"), values = c("lightblue3", "hotpink1")) +
theme(strip.text = element_text(size = 12)) +
labs(title = "Homens deveriam cuidar mais de seus filhos",
caption = "Fonte: ISSP, 2002.")+
theme(plot.background = element_blank(),
axis.title.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.x = element_blank(),
strip.text.y = element_text(angle = 0),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 1),
plot.caption = element_text(hjust = 0.5))
print(homem_cuidado_sexo)
```
#### Horas de trabalho fora e dentro do domicílio
```{r HorasTrab}
# Distribuição de brasileiros casados por horas semanais de trabalho remunerado, de acordo com seu sexo
horas_trab_sexo <- brasil_casados_vs %>%
filter(!is.na(horas_trab)) %>%
group_by(sexo) %>%
ggplot() +
geom_boxplot(aes(x = sexo, y = horas_trab, fill = sexo)) +
scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)) +
scale_fill_manual(labels = c("Masculino", "Femino"),
values = c("lightblue3", "hotpink1")) +
labs(y = "Horas trabalhadas", fill = "Sexo",
title = "Horas trabalhadas por sexo",
caption = "Fonte: ISSP, 2002.")+
theme(plot.background = element_blank(),
axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
plot.title = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0.5))
print(horas_trab_sexo)
```
```{r HorasTrabDom}
# Distribuição de brasileiros casados por horas semanais de trabalho doméstico não remunerado, de acordo com seu sexo
horas_trab_dom_sexo <- brasil_casados_vs %>%
mutate(horas_trab_dom = replace(horas_trab_dom, horas_trab_dom == 96, 0)) %>%
filter(!is.na(horas_trab_dom)) %>%
group_by(sexo) %>%
ggplot() +
geom_boxplot(aes(x = sexo, y = horas_trab_dom, fill = sexo)) +
scale_y_continuous(breaks = c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100)) +
scale_fill_manual(labels = c("Masculino", "Femino"),
values = c("lightblue3", "hotpink1")) +
labs(y = "Horas de trabalho doméstico", fill = "Sexo",
title = "Horas de trabalho doméstico por sexo",
caption = "Fonte: ISSP, 2002.")+
theme_minimal()
horas_trab_dom_sexo <- horas_trab_dom_sexo +
theme(axis.title.x = element_blank(),
axis.ticks.x = element_blank(),
axis.text.x = element_blank(),
plot.title = element_text(hjust = 0.5),
plot.caption = element_text(hjust = 0.5))
print(horas_trab_dom_sexo)
```
#### Divisão das tarefas domésticas e de cuidados
```{r QuemLavaRoupa}
# Distribuição relativa de brasileiros casados de acordo com o responsável pela lavagem das roupas por sexo
lava_roupa_sexo <- brasil_casados_vs %>%
mutate(lavar_roupa1 = case_when(
lavar_roupa == "Always my spouse,partner,PL:the man" ~ "Sempre o cônjuge",
lavar_roupa == "Always my spouse,partner,PL:the woman" ~ "Sempre o cônjuge",
lavar_roupa == "Always me,PL:the man" ~ "Sempre eu",
lavar_roupa == "Always me,PL:the woman" ~ "Sempre eu",
lavar_roupa == "Usually me,PL:the woman" ~ "Geralmente eu",
lavar_roupa == "Usually me,PL:the man" ~ "Geralmente eu",
lavar_roupa == "Done by a third person" ~ "Feita por um terceiro",
lavar_roupa == "About equal o both together" ~ "Tarefa feita pelos dois")) %>%
filter(!is.na(lavar_roupa1)) %>%
group_by(sexo, lavar_roupa1) %>%
summarise(n = n()) %>%
mutate(freq_lavar_roupa1 = n*100/sum(n)) %>%
ggplot(aes(x = sexo, y = freq_lavar_roupa1, fill = sexo)) +
geom_bar(stat = "identity", show.legend = TRUE) + facet_grid(lavar_roupa1 ~.) +
coord_flip() +
ylim(c(0, 90)) +
geom_text(aes(label = round(freq_lavar_roupa1, 2)), hjust = -.1) +
scale_fill_manual(label = c("Masculino", "Feminino"), values = c("lightblue3", "hotpink1")) +
theme(strip.text = element_text(size = 12)) +
labs(title = "Quem lava a roupa?",
caption = "Fonte: ISSP, 2002.") +
theme_minimal() +
theme(axis.title.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank(),
axis.title.x = element_blank(),
strip.text.y = element_text(angle = 0),
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 1),
plot.caption = element_text(hjust = 0.5))
print(lava_roupa_sexo)
```
```{r QuemLimpa}
# Distribuição relativa de brasileiros casados de acordo com o responsável pela limpeza da casa por sexo
limpeza_sexo <- brasil_casados_vs %>%
mutate(limpeza1 = case_when(
limpeza == "Always my spouse,partner,PL:the man" ~ "Sempre o cônjuge",
limpeza == "Always my spouse,partner,PL:the woman" ~ "Sempre o cônjuge",
limpeza == "Always me,PL:the man" ~ "Sempre eu",
limpeza == "Always me,PL:the woman" ~ "Sempre eu",
limpeza == "Usually me,PL:the woman" ~ "Geralmente eu",
limpeza == "Usually me,PL:the man" ~ "Geralmente eu",
limpeza == "Done by a third person" ~ "Feita por um terceiro",
limpeza == "About equal o both together" ~ "Tarefa feita pelos dois")) %>%
filter(!is.na(limpeza1)) %>%
group_by(sexo, limpeza1) %>%
summarise(n = n()) %>%
mutate(freq_limpeza1 = n*100/sum(n)) %>%
ggplot(aes(x = sexo, y = freq_limpeza1, fill = sexo)) +
geom_bar(stat = "identity", show.legend = TRUE) + facet_grid(limpeza1 ~.) +
coord_flip() +
ylim(c(0, 90)) +
geom_text(aes(label = round(freq_limpeza1, 2)), hjust = -.1) +
scale_fill_manual(label = c("Masculino", "Feminino"), values = c("lightblue3", "hotpink1")) +
theme(strip.text = element_text(size = 12)) +
labs(title = "Quem limpa?",
caption = "Fonte: ISSP, 2002.") +