-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcount2011Sift.m
208 lines (191 loc) · 8.81 KB
/
count2011Sift.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
function metrics = count2011Sift(sP,pxlSize, p1min,p1max,p2min,p2max,p3min,p3max,ratio,cutoff);
% counts2011Sift selects labelled protein aggregate areas in retinal images
%
% user can select min/max ranges for certain morphological parameters to
% facilitate the detection
%
% STEPS:
% 1) run the program my writing its name with the input parameters in
% brackets
% 2) you will be promped to choose an image for analysis from your computer
% 3) segmented figure with selected aggregates areas labeled with metrics
% will be displayed and saved to disk together with a .MAT file containing all
% metrics and a .TXT file with some of the metrics
%
% SYNOPSIS metrics = counts2011Sift(#sP)
%
% INPUT #sP : number of strongest SIFT keypoints to be displayed
%
%
% OUTPUT metrics : Features (coordinates, scale, orientation) and descriptors (128-dimentional
% vector)
%
% DEPENDENCES count2011SIFT uses {Matlab native functions}
%
% example run: metrics = count2011Test;
%
% Alexandre Matov, January 6th, 2023
%%
[fileName,dirName] = uigetfile('*.tif','Julie, please select a TIF file for analysis');
aux1 = imread([dirName,filesep,fileName]);
%aux1 = imread('A:\Amydis\Glaucoma SDEB Eye #2\Bottom\GC 090622-2 Bottom 1 40x 2011 Ab-647 01-Image Export-01\GC 090622-2 Bottom 1 40x 2011 Ab-647 01-Image Export-01_ChS1-T2_ORG.tif');
if nargin==0
sP = 2; % SIFT strongest points (number)
end
if nargin<2
pxlSize = 0.09; % microns - was 0.08 but found in my notes 0.09
end
if nargin<6
p1min = 500; % min area in pixels (default 500)
p1max = 8000; % max area in pixels (default 8000)
p2min = 120; % min perimeter around the aggregate (default 120)
p2max = 400; % max perimeter around the aggregate (dafault 400)
p3min = 270; % min perimeter around the aggregate (default 6000)
p3max = 65000; % max perimeter around the aggregate (dafault 20000)
end
if nargin<5
ratio = 2; % area over the perimeter ratio (default 6.3)
end
if nargin<6
cutoff = 1.25; % histogram cutoff factor
end
Igray = Gauss2D(double(aux1),1); % filtering of high frequency background noise
Iblur = Gauss2D(double(aux1),4); % filtering of background nonspecific intensity
Idiff = Igray - Iblur; % difference of gaussians
Idiff(find(Idiff<0))=0; % clipping of negative values
%figure, imshow(Igray,[]);
% automated selection of pixels which belong to foreground
[cutoffInd, cutoffV] = cutFirstHistMode(Igray,0);
threshold = cutoffV*cutoff;
%I = rgb2gray(I);
I = Igray>threshold;
X = bwlabel(I.*Igray);
BWoutline = bwperim(X);
Segout = Igray;
Segout(BWoutline) = 65535;
figure,imshow(Segout,[])
title('Aggregates outline contour is displayed in white on the original image');
points = detectSIFTFeatures(aux1);
h=figure, imshow(aux1);
hold on;
plot(points.selectStrongest(sP))
x = round(points.selectStrongest(sP).Location(:,1));
y = round(points.selectStrongest(sP).Location(:,2));
A = (x-1).*size(aux1,2)+y;
stats = regionprops(X,'all'); %
match = struct();
for i = 1:length(stats)
B = stats(i).PixelIdxList;
Lia = ismember(A,B); % SIFT,pixelIDlist
match(i).list = Lia;
%D=createDistanceMatrix(M,N)
end
hold on
ind = find([match.list]);%find(Lia);
% Open/create text files
fid=fopen([dirName,fileName(1:end-4),datestr(now, 'dd-mmm-yyyy'),'metricsSIFT.txt'],'a+');
fprintf(fid,'Selection based on the SIFT detector \n');
fprintf(fid,'(the metrics are in square microns for the area and microns for the rest) \n');
for m = 1:length(ind)
le = length(ind);
if fix(ind(m)/le)<ind(m)/le
indStats(m) = fix(ind(m)/le) + 1 ;
%indStats(m) = (ind(m)-mod(ind(m),le)) /length(ind) + mod(ind(m),le) %cialata chast
elseif fix(ind(m)/le)==ind(m)/le
indStats(m) = ind(m)/le ;
end
plot(stats(indStats(m)).Centroid(1),stats(indStats(m)).Centroid(2),'r*')
text(stats(indStats(m)).Centroid(1)+50,stats(indStats(m)).Centroid(2)+50,[num2str(round(stats(indStats(m)).Area*pxlSize*pxlSize*10)/10)],'Color','r');
%plot(stats(ind).Centroid(1),stats(ind).Centroid(2),'r*')
fprintf(fid,'----------------------------------------------------------------\n');
fprintf(fid,' Aggregate area | Aggregate perimeter | Length of major axis');% | MnAx | Eccen | CentI | CentX | CentY \n');
fprintf(fid,'%6.1f %6.0f %6.0f \n',stats(indStats(m)).Area*pxlSize*pxlSize,stats(indStats(m)).Perimeter*pxlSize,stats(indStats(m)).MajorAxisLength*pxlSize);%,stats(indStats(m)).MinorAxisLength*pxlSize,stats(indStats(m)).Eccentricity, aux1(round(x),round(y)),x,y);
end
hold off
title(['SIFT detections in green (scale shown as circle); hist. segmentation area centroid in red (number in um2)']);
saveas(h,[dirName,fileName(1:end-4),datestr(now, 'dd-mmm-yyyy'),'segmentedAggregatesSIFTdetections.tif']);
% Close text file
fclose(fid);
% h=figure,imshow(I.*Igray,[]);
% hold on
% for j = 1:length(stats)
% x=stats(j).Centroid(1);
% y=stats(j).Centroid(2);
% %plot(x,y,'b*','LineWidth',5);
% %aux2 = sum([aux1(stats(j).PixelIdxList)]);
% aux2 = aux1(round(x),round(y));
% text(x,y,[num2str(aux2)],'Color','b');
% if aux2 == 42663824
% AREA = stats(j).Area
% PERIMETER = stats(j).Perimeter
% CENTROID_INT = aux1(round(x),round(y));
%
% stats(j)
% end
% end
%
% centroids = cat(1,stats.Centroid);
% for i = 1: length(stats)
% aux3(i)= aux1(round(centroids(i,1)),round(centroids(i,2)));
% end
% list = find([stats.Perimeter]>p2min & [stats.Perimeter]<p2max & [stats.Area]>p1min & [stats.Area]<p1max & [aux3]>p3min & [aux3]<p3max);
%
% %for i = 1:length(stats)
% % x=round(stats(i).Centroid(1));
% % y=round(stats(i).Centroid(2));
% % if Igray(x,y)>3600
% % plot(x,y,'r*','LineWidth',2);
% % end
% %end
% % PLOTS the segmentation figure with the aggregates
% metrics = stats(1);%:length(list));
% %statsAgg=0;
% k=0;
% % Open/create text files
% %fid=fopen([dirName,fileName(1:end-4),datestr(now, 'dd-mmm-yyyy'),'metrics.txt'],'a+');
% %fprintf(fid,'Selection based on (in microns): \n');
% %fprintf(fid,' MnAre | MxAre | MnPer | MxPer | Mn Ar/Pe \n');
% %fprintf(fid,'%6.0f %6.0f %6.0f %6.0f %6.1f \n',p1min*pxlSize*pxlSize,p1max*pxlSize*pxlSize,p2min*pxlSize,p2max*pxlSize,ratio);
% % fprintf(fid,' MnInt | MxInt \n');
% % fprintf(fid,'%6.0f %6.0f \n',p3min,p3max);
%
% % fprintf(fid,'%6.0 %6.0 %6.0f %6.0f %6.0f %6.0f %6.1f \n',p3min,p3max,p1min*pxlSize*pxlSize,p1max*pxlSize*pxlSize,p2min*pxlSize,p2max*pxlSize,6.3);
%
% for i = 1:length(list)
% if stats(list(i)).Area/stats(list(i)).Perimeter>ratio%6.3%was2%4%7.8
% k=k+1;
% x=stats(list(i)).Centroid(1);
% y=stats(list(i)).Centroid(2);
% %plot(x,y,'b*','LineWidth',5);
% text(x+12,y+12,[num2str(round(stats(list(i)).Perimeter*pxlSize))],'Color','r');
% text(x+50,y+50,[num2str(round(stats(list(i)).Area*pxlSize*pxlSize*10)/10)],'Color','g');
% text(x+80,y+80,[num2str(aux1(round(x),round(y)))],'Color','y');% display aggregatte centroid intensity
% %fprintf(fid,'----------------------------------------------------------------\n');
% %fprintf(fid,' Area | Perim | MjAx | MnAx | Eccen | CentI | CentX | CentY \n');
% %fprintf(fid,'%6.1f %6.0f %6.0f %6.0f %6.2f %6.0f %6.0f %6.0f\n',stats(list(i)).Area*pxlSize*pxlSize,stats(list(i)).Perimeter*pxlSize,stats(list(i)).MajorAxisLength*pxlSize,stats(list(i)).MinorAxisLength*pxlSize,stats(list(i)).Eccentricity, aux1(round(x),round(y)),x,y);
% metrics(k)=stats(list(i));
% %writetable(struct2table(statistics), 'test.xls','sheet',k)
% end
% end
% %fprintf(fid,'----------------------------------------------------------------\n');
% %fprintf(fid,'The number of detected aggregates is:');
% %fprintf(fid,'%6.0f\n',k);
% % Close text file
% %fclose(fid);
% %plot(metrics(1).PixelList(1,:),'r*')
% title([num2str(k),' aggregates; perimeter [um] (red), area [um2] (green), centroid intensity [A.U.] (yellow)']);
% %save([dirName,fileName(1:end-4),datestr(now, 'dd-mmm-yyyy'),'metrics.mat'],'metrics');
% hold off
% %saveas(h,[dirName,fileName(1:end-4),datestr(now, 'dd-mmm-yyyy'),'segmentedAggregates.tif']);
%
%
%
%
% %writetable(struct2table(metrics), [dirName,filesep,'metrics.xlsx'])
% % goodFeats = find(15<(feats.len));
%
%
% % featNames = fieldnames(feats);
% % for field = 1:length(featNames)
% % feats.(featNames{field}) = feats.(featNames{field})(goodFeats,:);
% % end