-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_clm_lira.py
1210 lines (1073 loc) · 54.3 KB
/
run_clm_lira.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 Amazon.com, Inc. or its affiliates. All rights reserved.
#
# This code is based on work by HuggingFace Inc. and has been modified by Amazon.com, Inc. or its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import logging
import math
import random
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
import json
import datasets
import evaluate
import torch
from datasets import load_dataset
import numpy as np
import scipy.special
import scipy.stats
import pandas as pd
from tqdm.auto import tqdm
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
DataCollatorForTokenClassification,
is_torch_tpu_available,
set_seed,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
from tokenizers.processors import TemplateProcessing
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.39.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
#TODO! make dataset private/public/test dataset selection a la LIRA. Save sentence-score pairs
#based on https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
import contextlib
@contextlib.contextmanager
def temp_seed(seed):
state = np.random.get_state()
np.random.seed(seed)
try:
yield
finally:
np.random.set_state(state)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization. Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
use_auth_token: bool = field(
default=None,
metadata={
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead."
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option "
"should only be set to `True` for repositories you trust and in which you have read the code, as it will "
"execute code present on the Hub on your local machine."
)
},
)
torch_dtype: Optional[str] = field(
default=None,
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
low_cpu_mem_usage: bool = field(
default=False,
metadata={
"help": (
"It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. "
"set True will benefit LLM loading time and RAM consumption."
)
},
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
num_experiments: Optional[int] = field(
default=None,
metadata={
"help": (
"total number of private/public partitions for MIA purposes"
)
},
)
experiment_idx: Optional[int] = field(
default=None,
metadata={
"help": (
"experiment number for MIA purposes, needs to be an integer in {0, num_experiments-1}"
)
},
)
#TODO! new data splitting options :(
do_public_private_split: Optional[bool] = field(
default=False,
metadata={
"help": (
"Whether to split public and private data."
)
},
)
use_public_for_training: Optional[bool] = field(
default=False,
metadata={
"help": (
"Whether to use public or private split for training."
)
},
)
public_private_val_ratio: Optional[str] = field(
default='0.45,0.45,0.1',
metadata={
"help": (
"public private and private split ratios."
)
},
)
lira_train_ratio: Optional[float] = field(
default=0.9,
metadata={"help": "Lira specific setting, how much of the public data to use for training (inject data variability)"}
)
pkeep: Optional[float] = field(
default=0.5,
metadata={
"help": (
"percentage split of private data for MIA"
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
group_text: bool = field(default=False, metadata={"help": "Whether to group text into blocks"})
block_size: Optional[int] = field(
default=None,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
keep_linebreaks: bool = field(
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
)
predict_split: Optional[str] = field(default='private,public_train,public_validation', metadata={"help": "split for prediction"})
predict_normalize: Optional[bool] = field(
default=False,
metadata={
"help": (
"Whether to normalize the prediction."
)
},
)
text_column_name: Optional[str] = field(
default=None,
metadata={"help": "text column name"}
)
predict_chunk_size: Optional[int] = field(
default=1024,
metadata={"help": "chunk size for using trainer for prediction"}
)
save_by_chunk: Optional[bool] = field(
default=False, metadata={"help": "whether to save in chunks"}
)
add_bos_eos: Optional[bool] = field(
default=False,
metadata={"help": "whether to add bos and eos tokens to the text"}
)
sample_min_num_chars: Optional[int] = field(
default=0,
metadata={"help": "filter sample less than given number of chars."}
)
shift_text_pos: Optional[int] = field(
default=0,
metadata={"help": "shift samples by given number of tokens"}
)
def __post_init__(self):
if self.streaming:
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt", "parquet"], "`train_file` should be a csv, a json or a txt or a parquet file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt", "parquet"], "`validation_file` should be a csv, a json or a txt or a parquet file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
FutureWarning,
)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_clm", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None and data_args.train_file is None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
streaming=data_args.streaming,
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
token=model_args.token,
streaming=data_args.streaming,
)
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
token=model_args.token,
streaming=data_args.streaming,
)
else:
data_files = {}
dataset_args = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = (
data_args.train_file.split(".")[-1]
if data_args.train_file is not None
else data_args.validation_file.split(".")[-1]
)
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
**dataset_args,
)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
token=model_args.token,
**dataset_args,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
token=model_args.token,
**dataset_args,
)
logger.info(f"dataset_name={data_args.dataset_name}")
# Dataset splitting. Train - Train/Public
# MB
train_split_name ='train'
if data_args.num_experiments is not None:
assert data_args.experiment_idx is not None, 'experiment_idx needs to be set if using num_experiments'
assert data_args.experiment_idx< data_args.num_experiments and data_args.experiment_idx>=0, 'experiment_idx needs to be in {0,..., num_experiments-1}'
with temp_seed(42):
num_train_samples = len(raw_datasets["train"])
master_keep = np.random.uniform(
size=(data_args.num_experiments, num_train_samples), low=0, high=1
)
order = master_keep.argsort(0)
master_keep = order < int(data_args.pkeep * data_args.num_experiments)
keep = np.array(master_keep[data_args.experiment_idx], dtype=bool)
private_indices = list(np.where(keep)[0])
public_indices = list(np.where(~keep)[0])
raw_datasets['public_private'] = raw_datasets["train"]
raw_datasets['public_train'] = raw_datasets["train"].select(public_indices)
raw_datasets['private'] = raw_datasets["train"].select(private_indices)
train_split_name = 'private'
elif data_args.do_public_private_split:
if data_args.use_public_for_training:
train_split_name ='public_train'
else:
train_split_name ='private'
public_private_val_ratio = [0.]+[float(p) for p in data_args.public_private_val_ratio.split(',')]
cumulative_ratios = np.cumsum(public_private_val_ratio)
with temp_seed(42):
num_train_samples = len(raw_datasets["train"])
master_keep = np.random.uniform(
size=(num_train_samples), low=0, high=1
)
private_keep = np.logical_and(~np.array(master_keep<cumulative_ratios[0], dtype=bool), np.array(master_keep<=cumulative_ratios[1], dtype=bool), )
public_train_keep = np.logical_and(~np.array(master_keep<cumulative_ratios[1], dtype=bool), np.array(master_keep<=cumulative_ratios[2], dtype=bool), )
public_val_keep = np.logical_and(~np.array(master_keep<cumulative_ratios[2], dtype=bool), np.array(master_keep<=cumulative_ratios[3], dtype=bool), )
private_indices = list(np.where(private_keep)[0])
public_train_indices = list(np.where(public_train_keep)[0])
public_val_indices = list(np.where(public_val_keep)[0])
logger.info("private & public_train = {}".format(len(set(private_indices) & set(public_train_indices))))
logger.info("private & public_test = {}".format(len(set(private_indices) & set(public_val_indices))))
logger.info("public_train & public_test = {}".format(len(set(public_train_indices) & set(public_val_indices))))
if data_args.experiment_idx is not None and data_args.lira_train_ratio:
#further subsample public train to add data variation
with temp_seed(42+data_args.experiment_idx):
np.random.shuffle(public_train_indices)
public_train_indices = public_train_indices[:int(data_args.lira_train_ratio * len(public_train_indices))]
public_train_indices = list(sorted(public_train_indices))
# raw_datasets['public_private'] = raw_datasets["train"]
raw_datasets['public_train'] = raw_datasets["train"].select(public_train_indices)
raw_datasets['public_test'] = raw_datasets["train"].select(public_val_indices)
raw_datasets['private'] = raw_datasets["train"].select(private_indices)
raw_datasets.pop("train")
logger.info(f"Using {train_split_name} for training")
if data_args.sample_min_num_chars > 0:
logger.info(f"Filter samples with less than {data_args.sample_min_num_chars} chars.")
for split, dataset in raw_datasets.items():
raw_datasets[split] = dataset.filter(lambda example: len(example[data_args.text_column_name]) >= data_args.sample_min_num_chars)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.token,
"trust_remote_code": model_args.trust_remote_code,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"token": model_args.token,
"trust_remote_code": model_args.trust_remote_code,
}
logger.info(f"tokenizer_kwargs={tokenizer_kwargs}")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
logger.info(f"tokenizer={type(tokenizer)}")
from transformers import GPTNeoXTokenizerFast
from transformers import LlamaTokenizerFast
if isinstance(tokenizer, GPTNeoXTokenizerFast):
tokenizer.pad_token = '<|padding|>'
tokenizer.pad_token_id = 1
config.pad_token_id = 1
elif isinstance(tokenizer, LlamaTokenizerFast):
tokenizer.pad_token = '<unk>'
tokenizer.pad_token_id = 0
config.pad_token_id = 0
logger.info(f"pad_token={tokenizer.pad_token}")
if not tokenizer.padding_side == "right":
tokenizer.padding_side = "right"
logger.info(f"padding_side={tokenizer.padding_side}")
# add [BOS] and [EOS] to the text
if data_args.add_bos_eos:
logger.info(f"Add BOS={tokenizer.bos_token}, EOS={tokenizer.eos_token}")
tokenizer._tokenizer.post_processor = TemplateProcessing(
single=f"{tokenizer.bos_token} $A {tokenizer.eos_token}",
special_tokens=[(tokenizer.bos_token, tokenizer.bos_token_id), (tokenizer.eos_token, tokenizer.eos_token_id)],
)
logger.info(f"Encoded emtpy string:{tokenizer('')}")
if model_args.model_name_or_path:
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
torch_dtype=torch_dtype,
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
)
else:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = list(raw_datasets[train_split_name].features)
else:
column_names = list(raw_datasets["validation"].features)
if data_args.text_column_name is None:
text_column_name = "text" if "text" in column_names else column_names[0]
else:
text_column_name = data_args.text_column_name
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
# For preprocessing, we will adopt similar style as token-classification
# Padding strategy
padding = "max_length" if data_args.pad_to_max_length else False
if hasattr(config, "max_position_embeddings"):
max_pos_embeddings = config.max_position_embeddings
else:
# Define a default value if the attribute is missing in the config.
max_pos_embeddings = 1024
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > max_pos_embeddings:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx."
)
if max_pos_embeddings > 0:
block_size = min(1024, max_pos_embeddings)
else:
block_size = 1024
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model "
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
if data_args.group_text:
def tokenize_function(examples):
with CaptureLogger(tok_logger) as cl:
output = tokenizer(examples[text_column_name])
# clm input could be much much longer than block_size
if "Token indices sequence length is longer than the" in cl.out:
tok_logger.warning(
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
" before being passed to the model."
)
return output
else:
def tokenize_function(examples):
tokenized_inputs = tokenizer(
examples[text_column_name],
padding=padding,
truncation=True,
max_length=block_size
)
return tokenized_inputs
with training_args.main_process_first(desc="dataset map tokenization"):
if not data_args.streaming:
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names if data_args.group_text else None,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
else:
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
remove_columns=column_names if data_args.group_text else None,
)
if data_args.group_text:
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict.
# We could add padding if the model supported it instead of this drop, you can customize this part to your needs.
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
# rename original label
if "label" in result:
result["orig_label"] = result.pop("label")
if "labels" in result:
result["orig_labels"] = result.pop("labels")
result["labels"] = result["input_ids"].copy()
return result
group_text_desc=f"Grouping texts in chunks of {block_size}"
else:
def group_texts(examples):
# rename original label
if "label" in examples:
examples["orig_label"] = examples.pop("label")
if "labels" in examples:
examples["orig_labels"] = examples.pop("labels")
examples["labels"] = examples["input_ids"].copy()
return examples
group_text_desc=f"Single texts in chunks of {block_size}"
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/process#map
with training_args.main_process_first(desc="grouping texts together"):
if not data_args.streaming:
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=group_text_desc,
)
else:
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
)
if not data_args.group_text and data_args.shift_text_pos:
def shift_texts(examples):
# shift text
examples["input_ids"] = [[tokenizer.pad_token_id] * data_args.shift_text_pos + input_ids for input_ids in examples["input_ids"]]
examples["attention_mask"] = [[0] * data_args.shift_text_pos + attention_mask for attention_mask in examples["attention_mask"]]
examples["labels"] = examples["input_ids"].copy()
return examples
shift_text_desc=f"Shift text by {data_args.shift_text_pos}"
with training_args.main_process_first(desc="grouping texts together"):
if not data_args.streaming:
lm_datasets = lm_datasets.map(
shift_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=shift_text_desc,
)
else:
lm_datasets = lm_datasets.map(
shift_texts,
batched=True,
)
if training_args.do_train:
if train_split_name not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = lm_datasets[train_split_name]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = lm_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir)
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics but we need to shift the labels
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
return metric.compute(predictions=preds, references=labels)
if training_args.do_predict or data_args.test_file is not None:
if data_args.predict_split is None:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_split = "test"
predict_dataset = [lm_datasets["test"]]
elif data_args.predict_split is not None:
predict_dataset = [
lm_datasets[p_split] for p_split in data_args.predict_split.split(",")
]
logger.info(f"predict on {data_args.predict_split}")
predict_split = data_args.predict_split
if data_args.max_predict_samples is not None:
predict_dataset = [d.select(range(min(len(d), data_args.max_predict_samples))) for d in predict_dataset]
if data_args.group_text:
data_collator = default_data_collator
else:
data_collator = DataCollatorForTokenClassification(
tokenizer,
padding="longest",
pad_to_multiple_of=8
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=data_collator,
compute_metrics=compute_metrics,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval and not is_torch_tpu_available()
else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the {train_split_name} set: {train_dataset[index]}.")
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
# redefine preprocess function and compute_metrics for prediction
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
logits = logits[:, :-1, :]
labels = labels[:, 1:]
excluded_logits = logits.detach().clone()
sample_indices = torch.arange(labels.shape[0]).repeat_interleave(labels.shape[1])
token_indices = torch.arange(labels.shape[1]).repeat(labels.shape[0])
# label for masked tokens would have value -100 by default
masked_sample_indices, masked_token_indices = torch.where(labels < 0)
# set excluded indices to -inf, if masked indices, just set last index to -inf
excluded_logits[
sample_indices,
token_indices,
labels.clamp(min=-1).reshape(-1),