-
Notifications
You must be signed in to change notification settings - Fork 0
/
mezo_dataset.py
695 lines (609 loc) · 30.7 KB
/
mezo_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
"""Dataset utils for different data settings for GLUE."""
import os
import logging
import torch
import numpy as np
import time
from filelock import FileLock
import json
# from src.processors import processors_mapping, num_labels_mapping, output_modes_mapping, compute_metrics_mapping, median_mapping
from transformers.data.processors.utils import InputFeatures
import dataclasses
from dataclasses import dataclass
from typing import List, Optional, Union
import pandas as pd
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
@dataclass(frozen=True)
class OurInputFeatures(InputFeatures):
"""
Inherit from Transformers' InputFeatuers.
"""
input_ids: List[int]
attention_mask: Optional[List[int]] = None
token_type_ids: Optional[List[int]] = None
label: Optional[Union[int, float]] = None
mask_pos: Optional[List[int]] = None # Position of the mask token
label_word_list: Optional[List[int]] = None # Label word mapping (dynamic)
# For icl sfc
sfc_input_ids: List[int] = None
sfc_attention_mask: Optional[List[int]] = None
sfc_mask_pos: Optional[List[int]] = None
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(dataclasses.asdict(self)) + "\n"
def input_example_to_string(example, sep_token):
if example.text_b is None:
return example.text_a
else:
# Warning: very simple hack here
return example.text_a + ' ' + sep_token + ' ' + example.text_b
def input_example_to_tuple(example):
if example.text_b is None:
if pd.isna(example.text_a) or example.text_a is None:
return ['']
logger.warn("Empty input")
else:
return [example.text_a]
else:
return [example.text_a, example.text_b]
def tokenize_multipart_input(
input_text_list,
max_length,
tokenizer,
task_name=None,
prompt=False,
template=None,
label_word_list=None,
first_sent_limit=None,
other_sent_limit=None,
gpt3=False,
truncate_head=False,
support_labels=None,
):
def enc(text):
return tokenizer.encode(text, add_special_tokens=False)
input_ids = []
attention_mask = []
token_type_ids = [] # Only for BERT
mask_pos = None # Position of the mask token
if prompt:
"""
Concatenate all sentences and prompts based on the provided template.
Template example: '*cls*It was*mask*.*sent_0**<sep>*label_0:*sent_1**<sep>**label_1*:*sent_2**<sep>*'
*xx* represent variables:
*cls*: cls_token
*mask*: mask_token
*sep*: sep_token
*sep+*: sep_token, also means +1 for segment id
*sent_i*: sentence i (input_text_list[i])
*sent-_i*: same as above, but delete the last token
*sentl_i*: same as above, but use lower case for the first word
*sentl-_i*: same as above, but use lower case for the first word and delete the last token
*+sent_i*: same as above, but add a space before the sentence
*+sentl_i*: same as above, but add a space before the sentence and use lower case for the first word
*label_i*: label_word_list[i]
*label_x*: label depends on the example id (support_labels needed). this is only used in GPT-3's in-context learning
Use "_" to replace space.
PAY ATTENTION TO SPACE!! DO NOT leave space before variables, for this will lead to extra space token.
"""
assert template is not None
special_token_mapping = {
'bos': tokenizer.bos_token_id, 'cls': tokenizer.cls_token_id, 'eos': tokenizer.eos_token_id, 'mask': tokenizer.mask_token_id, 'sep': tokenizer.sep_token_id, 'sep+': tokenizer.sep_token_id,
}
template_list = template.split('*') # Get variable list in the template
segment_id = 0 # Current segment id. Segment id +1 if encountering sep+.
for part_id, part in enumerate(template_list):
new_tokens = []
segment_plus_1_flag = False
if part in special_token_mapping:
if (part == 'cls' or part == 'bos'): # and ('T5' in type(tokenizer).__name__ or tokenizer.model_type == "gpt2"):
# T5 or GPT-2 do not have cls token
continue
new_tokens.append(special_token_mapping[part])
if part == 'sep+':
segment_plus_1_flag = True
elif part[:6] == 'label_':
# Note that label_word_list already has extra space, so do not add more space ahead of it.
label_id = int(part.split('_')[1])
label_word = label_word_list[label_id]
new_tokens.append(label_word)
elif part[:7] == 'labelx_':
instance_id = int(part.split('_')[1])
label_id = support_labels[instance_id]
label_word = label_word_list[label_id]
new_tokens.append(label_word)
elif part[:5] == 'sent_':
sent_id = int(part.split('_')[1])
new_tokens += enc(input_text_list[sent_id])
elif part[:6] == '+sent_':
# Add space
sent_id = int(part.split('_')[1])
new_tokens += enc(' ' + input_text_list[sent_id])
elif part[:6] == 'sent-_':
# Delete the last token
sent_id = int(part.split('_')[1])
new_tokens += enc(input_text_list[sent_id][:-1])
elif part[:6] == 'sentl_':
# Lower case the first token
sent_id = int(part.split('_')[1])
text = input_text_list[sent_id]
text = text[:1].lower() + text[1:]
new_tokens += enc(text)
elif part[:7] == '+sentl_':
# Lower case the first token and add space
sent_id = int(part.split('_')[1])
text = input_text_list[sent_id]
text = text[:1].lower() + text[1:]
new_tokens += enc(' ' + text)
elif part[:7] == 'sentl-_':
# Lower case the first token and discard the last token
sent_id = int(part.split('_')[1])
text = input_text_list[sent_id]
text = text[:1].lower() + text[1:]
new_tokens += enc(text[:-1])
elif part[:6] == 'sentu_':
# Upper case the first token
sent_id = int(part.split('_')[1])
text = input_text_list[sent_id]
text = text[:1].upper() + text[1:]
new_tokens += enc(text)
elif part[:7] == '+sentu_':
# Upper case the first token and add space
sent_id = int(part.split('_')[1])
text = input_text_list[sent_id]
text = text[:1].upper() + text[1:]
new_tokens += enc(' ' + text)
elif part[:8] == '+sentu-_':
# Upper case the first token and add space
sent_id = int(part.split('_')[1])
text = input_text_list[sent_id]
text = text[:1].upper() + text[1:]
new_tokens += enc(' ' + text[:-1])
else:
# Just natural language prompt
part = part.replace('_', ' ')
# handle special case when T5 tokenizer might add an extra space
if len(part) == 1:
new_tokens.append(tokenizer.convert_tokens_to_ids(part))
else:
new_tokens += enc(part)
if part[:4] == 'sent' or part[1:5] == 'sent':
# If this part is the sentence, limit the sentence length
sent_id = int(part.split('_')[1])
if sent_id == 0:
if first_sent_limit is not None:
new_tokens = new_tokens[:first_sent_limit]
else:
if other_sent_limit is not None:
new_tokens = new_tokens[:other_sent_limit]
input_ids += new_tokens
attention_mask += [1 for i in range(len(new_tokens))]
token_type_ids += [segment_id for i in range(len(new_tokens))]
if segment_plus_1_flag:
segment_id += 1
else:
if tokenizer.cls_token_id is not None:
input_ids = [tokenizer.cls_token_id]
attention_mask = [1]
token_type_ids = [0]
else:
input_ids = []
attention_mask = []
token_type_ids = []
for sent_id, input_text in enumerate(input_text_list):
if input_text is None:
# Do not have text_b
continue
if pd.isna(input_text) or input_text is None:
# Empty input
input_text = ''
input_tokens = enc(input_text) + [tokenizer.sep_token_id]
input_ids += input_tokens
attention_mask += [1 for i in range(len(input_tokens))]
token_type_ids += [sent_id for i in range(len(input_tokens))]
if 'T5' in type(tokenizer).__name__: # T5 does not have CLS token
input_ids = input_ids[1:]
attention_mask = attention_mask[1:]
token_type_ids = token_type_ids[1:]
# Padding
if first_sent_limit is not None and len(input_ids) > max_length:
# If using sentence limit, the total length still exceeds the maximum limit, report a warning
logger.warn("Input exceeds max_length limit: {}".format(tokenizer.decode(input_ids)))
### Code below is commented out, because we use dynamic padding rather than static padding to max_length
while len(input_ids) < max_length:
input_ids.append(tokenizer.pad_token_id)
attention_mask.append(0)
token_type_ids.append(0)
# Truncate
if len(input_ids) > max_length:
if truncate_head:
input_ids = input_ids[-max_length:]
attention_mask = attention_mask[-max_length:]
token_type_ids = token_type_ids[-max_length:]
else:
# Default is to truncate the tail
input_ids = input_ids[:max_length]
attention_mask = attention_mask[:max_length]
token_type_ids = token_type_ids[:max_length]
# Find mask token
if prompt and tokenizer.mask_token_id is not None:
# Make sure that the masked position is inside the max_length
assert tokenizer.mask_token_id in input_ids, \
"Mask token not found for input: {} {}".format(input_text_list, input_ids)
mask_pos = [input_ids.index(tokenizer.mask_token_id)]
assert mask_pos[0] < max_length
elif prompt and tokenizer.mask_token_id is None:
# autoregressive model
mask_pos = [len(input_ids) - 1]
result = {'input_ids': input_ids, 'attention_mask': attention_mask}
if 'BERT' in type(tokenizer).__name__:
# Only provide token type ids for BERT
result['token_type_ids'] = token_type_ids
if prompt:
result['mask_pos'] = mask_pos
return result
class FewShotDataset(torch.utils.data.Dataset):
"""Few-shot dataset."""
def __init__(self, args, tokenizer, cache_dir=None, mode="train", use_demo=False):
self.args = args
self.task_name = args.task_name
self.processor = processors_mapping[args.task_name]
self.tokenizer = tokenizer
self.mode = mode
# If not using demonstrations, use use_demo=True
self.use_demo = use_demo
if self.use_demo:
print("Use demonstrations")
assert mode in ["train", "dev", "test"]
# Get label list and (for prompt) label word list
self.label_list = self.processor.get_labels()
self.num_labels = len(self.label_list)
if args.prompt and args.mapping is not None:
self.label_to_word = eval(args.mapping)
for key in self.label_to_word:
# For RoBERTa/BART/T5, tokenization also considers space, so we use space+word as label words.
if self.label_to_word[key][0] not in ['<', '[', '.', ',']:
# Make sure space+word is in the vocabulary
assert len(tokenizer.tokenize(' ' + self.label_to_word[key])) == 1
self.label_to_word[key] = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(' ' + self.label_to_word[key])[0])
else:
self.label_to_word[key] = tokenizer.convert_tokens_to_ids(self.label_to_word[key])
print("Label {} to word {} ({})".format(key, tokenizer.convert_ids_to_tokens(self.label_to_word[key]), self.label_to_word[key]))
if len(self.label_list) > 1:
self.label_word_list = [self.label_to_word[label] for label in self.label_list]
else:
# Regression task
# '0' represents low polarity and '1' represents high polarity.
self.label_word_list = [self.label_to_word[label] for label in ['0', '1']]
else:
self.label_to_word = None
self.label_word_list = None
# Multiple sampling: when using demonstrations, we sample different combinations of demonstrations during
# inference and aggregate the results by averaging the logits. The number of different samples is num_sample.
if (mode == "train") or not self.use_demo:
# We do not do multiple sampling when not using demonstrations or when it's the training mode
self.num_sample = 1
else:
self.num_sample = args.num_sample
# If we use multiple templates, we also need to do multiple sampling during inference.
if args.prompt and args.template_list is not None:
print("There are %d templates. Multiply num_sample by %d" % (len(args.template_list), len(args.template_list)))
self.num_sample *= len(args.template_list)
print("Total num_sample for mode %s: %d" % (mode, self.num_sample))
# Load cache
# Cache name distinguishes mode, task name, tokenizer, and length. So if you change anything beyond these elements, make sure to clear your cache.
cached_features_file = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,
"cached_{}_{}_{}_{}".format(
mode,
tokenizer.__class__.__name__ + "-" + tokenizer.model_type,
str(args.max_seq_length),
args.task_name,
),
)
print(f"Creating/loading examples from dataset file at {args.data_dir}")
lock_path = cached_features_file + ".lock"
with FileLock(lock_path):
if os.path.exists(cached_features_file) and not args.overwrite_cache:
start = time.time()
self.support_examples, self.query_examples = torch.load(cached_features_file)
print(
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
)
else:
print(f"Creating features from dataset file at {args.data_dir}")
# The support examples are sourced from the training set.
self.support_examples = self.processor.get_train_examples(args.data_dir)
if mode == "dev":
self.query_examples = self.processor.get_dev_examples(args.data_dir)
elif mode == "test":
self.query_examples = self.processor.get_test_examples(args.data_dir)
else:
self.query_examples = self.support_examples
start = time.time()
torch.save([self.support_examples, self.query_examples], cached_features_file)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
print(
"Saving features into cached file %s [took %.3f s]", cached_features_file, time.time() - start
)
# For filtering in using demonstrations, load pre-calculated embeddings
if self.use_demo and args.demo_filter:
split_name = ''
if mode == 'train':
split_name = 'train'
elif mode == 'dev':
if args.task_name == 'mnli':
split_name = 'dev_matched'
elif args.task_name == 'mnli-mm':
split_name = 'dev_mismatched'
else:
split_name = 'dev'
elif mode == 'test':
if args.task_name == 'mnli':
split_name = 'test_matched'
elif args.task_name == 'mnli-mm':
split_name = 'test_mismatched'
else:
split_name = 'test'
else:
raise NotImplementedError
self.support_emb = np.load(os.path.join(args.data_dir, "train_{}.npy".format(args.demo_filter_model)))
self.query_emb = np.load(os.path.join(args.data_dir, "{}_{}.npy".format(split_name, args.demo_filter_model)))
print("Load embeddings (for demonstration filtering) from {}".format(os.path.join(args.data_dir, "{}_{}.npy".format(split_name, args.demo_filter_model))))
assert len(self.support_emb) == len(self.support_examples)
assert len(self.query_emb) == len(self.query_examples)
# Size is expanded by num_sample
self.size = len(self.query_examples) * self.num_sample
# Prepare examples (especially for using demonstrations)
support_indices = list(range(len(self.support_examples)))
self.example_idx = []
for sample_idx in range(self.num_sample):
for query_idx in range(len(self.query_examples)):
# If training, exclude the current example. Else keep all.
if self.use_demo and args.demo_filter:
# Need sentence_transformers for demonstrations,
# which is not included in the requirements for us, but see original LM-BFF repo.
from sentence_transformers import SentenceTransformer, util
# Demonstration filtering
candidate = [support_idx for support_idx in support_indices
if support_idx != query_idx or mode != "train"]
sim_score = []
for support_idx in candidate:
sim_score.append((support_idx, util.pytorch_cos_sim(self.support_emb[support_idx], self.query_emb[query_idx])))
sim_score.sort(key=lambda x: x[1], reverse=True)
if self.num_labels == 1:
# Regression task
limit_each_label = int(len(sim_score) // 2 * args.demo_filter_rate)
count_each_label = {'0': 0, '1': 0}
context_indices = []
if args.debug_mode:
print("Query %s: %s" % (self.query_examples[query_idx].label, self.query_examples[query_idx].text_a)) # debug
for support_idx, score in sim_score:
if count_each_label['0' if float(self.support_examples[support_idx].label) <= median_mapping[args.task_name] else '1'] < limit_each_label:
count_each_label['0' if float(self.support_examples[support_idx].label) <= median_mapping[args.task_name] else '1'] += 1
context_indices.append(support_idx)
if args.debug_mode:
print(" %.4f %s | %s" % (score, self.support_examples[support_idx].label, self.support_examples[support_idx].text_a)) # debug
else:
limit_each_label = int(len(sim_score) // self.num_labels * args.demo_filter_rate)
count_each_label = {label: 0 for label in self.label_list}
context_indices = []
if args.debug_mode:
print("Query %s: %s" % (self.query_examples[query_idx].label, self.query_examples[query_idx].text_a)) # debug
for support_idx, score in sim_score:
if count_each_label[self.support_examples[support_idx].label] < limit_each_label:
count_each_label[self.support_examples[support_idx].label] += 1
context_indices.append(support_idx)
if args.debug_mode:
print(" %.4f %s | %s" % (score, self.support_examples[support_idx].label, self.support_examples[support_idx].text_a)) # debug
else:
# Using demonstrations without filtering
context_indices = [support_idx for support_idx in support_indices
if support_idx != query_idx or mode != "train"]
# We'll subsample context_indices further later.
self.example_idx.append((query_idx, context_indices, sample_idx))
# If it is not training, we pre-process the data; otherwise, we process the data online.
if mode != "train":
self.features = []
_ = 0
for query_idx, context_indices, bootstrap_idx in self.example_idx:
# The input (query) example
example = self.query_examples[query_idx]
# The demonstrations
supports = self.select_context([self.support_examples[i] for i in context_indices])
if args.template_list is not None:
template = args.template_list[sample_idx % len(args.template_list)] # Use template in order
else:
template = args.template
self.features.append(self.convert_fn(
example=example,
supports=supports,
use_demo=self.use_demo,
label_list=self.label_list,
prompt=args.prompt,
template=template,
sfc_template=getattr(args, "icl_sfc_prompt", None),
label_word_list=self.label_word_list,
verbose=True if _ == 0 else False,
))
_ += 1
else:
self.features = None
def select_context(self, context_examples):
"""
Select demonstrations from provided examples.
"""
max_demo_per_label = 1
counts = {k: 0 for k in self.label_list}
if len(self.label_list) == 1:
# Regression
counts = {'0': 0, '1': 0}
selection = []
if self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail:
# For GPT-3's in-context learning, we sample gpt3_in_context_num demonstrations randomly.
order = np.random.permutation(len(context_examples))
for i in range(min(self.args.gpt3_in_context_num, len(order))):
selection.append(context_examples[order[i]])
else:
# Our sampling strategy
order = np.random.permutation(len(context_examples))
for i in order:
label = context_examples[i].label
if len(self.label_list) == 1:
# Regression
label = '0' if float(label) <= median_mapping[self.args.task_name] else '1'
if counts[label] < max_demo_per_label:
selection.append(context_examples[i])
counts[label] += 1
if sum(counts.values()) == len(counts) * max_demo_per_label:
break
assert len(selection) > 0
return selection
def __len__(self):
return self.size
def __getitem__(self, i):
if self.features is None:
query_idx, context_indices, bootstrap_idx = self.example_idx[i]
# The input (query) example
example = self.query_examples[query_idx]
# The demonstrations
supports = self.select_context([self.support_examples[i] for i in context_indices])
if self.args.template_list is not None:
template = self.args.template_list[sample_idx % len(self.args.template_list)]
else:
template = self.args.template
features = self.convert_fn(
example=example,
supports=supports,
use_demo=self.use_demo,
label_list=self.label_list,
prompt=self.args.prompt,
template=template,
label_word_list=self.label_word_list,
verbose=False,
)
else:
features = self.features[i]
return features
def get_labels(self):
return self.label_list
def convert_fn(
self,
example,
supports,
use_demo=False,
label_list=None,
prompt=False,
template=None,
sfc_template=None,
label_word_list=None,
verbose=False
):
"""
Returns a list of processed "InputFeatures".
"""
max_length = self.args.max_seq_length
# Prepare labels
label_map = {label: i for i, label in enumerate(label_list)} # Mapping the label names to label ids
if len(label_list) == 1:
# Regression
label_map = {'0': 0, '1': 1}
# Get example's label id (for training/inference)
if example.label is None:
example_label = None
elif len(label_list) == 1:
# Regerssion
example_label = float(example.label)
else:
example_label = label_map[example.label]
# Prepare other features
if not use_demo:
# No using demonstrations
inputs = tokenize_multipart_input(
input_text_list=input_example_to_tuple(example),
max_length=max_length,
tokenizer=self.tokenizer,
task_name=self.args.task_name,
prompt=prompt,
template=template,
label_word_list=label_word_list,
first_sent_limit=self.args.first_sent_limit,
other_sent_limit=self.args.other_sent_limit,
)
features = OurInputFeatures(**inputs, label=example_label)
else:
# Using demonstrations
# Max length
if self.args.double_demo:
# When using demonstrations, double the maximum length
# Note that in this case, args.max_seq_length is the maximum length for a single sentence
max_length = max_length * 2
if self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail:
# When using GPT-3's in-context learning, take the maximum tokenization length of the model (512)
if self.tokenizer.model_type == "gpt2":
max_length = 1024
elif self.tokenizer.model_type == "opt":
max_length = 2048
else:
max_length = 512
# All input sentences, including the query and the demonstrations, are put into augmented_examples,
# and are numbered based on the order (starting from 0). For single sentence tasks, the input (query)
# is the sentence 0; for sentence-pair tasks, the input (query) is the sentence 0 and 1. Note that for GPT-3's
# in-context learning, the input (query) might be at the end instead of the beginning (gpt3_in_context_head)
augmented_example = []
query_text = input_example_to_tuple(example) # Input sentence list for query
support_by_label = [[] for i in range(len(label_map))]
if self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail:
support_labels = []
augmented_example = query_text
for support_example in supports:
augmented_example += input_example_to_tuple(support_example)
current_label = support_example.label
if len(label_list) == 1:
current_label = '0' if float(current_label) <= median_mapping[self.args.task_name] else '1' # Regression
support_labels.append(label_map[current_label])
else:
# Group support examples by label
for label_name, label_id in label_map.items():
if len(label_list) == 1:
# Regression
for support_example in filter(lambda s: ('0' if float(s.label) <= median_mapping[self.args.task_name] else '1') == label_name, supports):
support_by_label[label_id] += input_example_to_tuple(support_example)
else:
for support_example in filter(lambda s: s.label == label_name, supports):
support_by_label[label_id] += input_example_to_tuple(support_example)
augmented_example = query_text
for label_id in range(len(label_map)):
augmented_example += support_by_label[label_id]
# Tokenization (based on the template)
inputs = tokenize_multipart_input(
input_text_list=augmented_example,
max_length=max_length,
tokenizer=self.tokenizer,
task_name=self.args.task_name,
prompt=prompt,
template=template,
label_word_list=label_word_list,
first_sent_limit=self.args.first_sent_limit,
other_sent_limit=self.args.other_sent_limit,
truncate_head=self.args.truncate_head,
gpt3=self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail,
support_labels=None if not (self.args.gpt3_in_context_head or self.args.gpt3_in_context_tail) else support_labels
)
if sfc_template is not None:
# Process sfc example
if verbose:
print("*** SFC Example ***")
sfc_feature = self.convert_fn(
example, supports, use_demo=use_demo, label_list=label_list, prompt=prompt, template=sfc_template, label_word_list=label_word_list, verbose=verbose
)
features = OurInputFeatures(**inputs, label=example_label, sfc_input_ids=sfc_feature.input_ids, sfc_attention_mask=sfc_feature.attention_mask, sfc_mask_pos=sfc_feature.mask_pos)
else:
features = OurInputFeatures(**inputs, label=example_label)
if verbose:
print("*** Example ***")
print("guid: %s" % (example.guid))
print("features: %s" % features)
print("text: %s" % self.tokenizer.decode(features.input_ids))
return features