-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
executable file
·381 lines (299 loc) · 12.1 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data.dataset import TensorDataset
import matplotlib.pyplot as plt
from einops import rearrange, repeat, reduce
from scipy.optimize import root_scalar
from scipy.special import erf
from functools import partial
from pathlib import Path
import scipy.io
from torchvision.transforms import InterpolationMode
from torchvision.transforms import Resize
import os
import utils
def meshgrid(ts, xs):
_, nt = ts.shape
_, nx = xs.shape
ts = repeat(ts, "nf nt -> nf nt nx", nx=nx)
xs = repeat(xs, "nf nx -> nf nt nx", nt=nt)
return torch.stack((ts, xs), dim=-1)
class HeatEquation_1D:
def __init__(self, nx_soln=1000):
self.nx_soln = nx_soln # Grid spacing to evaluate the solution (fixed)
def _convection_diffusion_solution(self, x_start, t_values, nu, beta, source=0):
nx = x_start.shape[0]
forcing_term = np.zeros_like(x_start) + source # G is the same size as u0
ikx_pos = 1j * np.arange(0, nx / 2 + 1, 1)
ikx_neg = 1j * np.arange(-nx / 2 + 1, 0, 1)
ikx = np.concatenate((ikx_pos, ikx_neg))
ikx2 = ikx * ikx
uhat0 = np.fft.fft(x_start)
nu_term = nu * ikx2 * t_values
beta_term = beta * ikx * t_values
nu_factor = np.exp(nu_term - beta_term)
uhat = (
uhat0 * nu_factor + np.fft.fft(forcing_term) * t_values
) # for constant, fft(p) dt = fft(p)*T
return np.real(np.fft.ifft(uhat))
def _convection_onedim_for_one_parameter(self, t_values, theta, nu):
x_grid = np.linspace(0, 2*np.pi, self.nx_soln)
x_start = np.sin(x_grid + theta)
t_grid = repeat(t_values, "nt -> nt nx", nx=self.nx_soln)
t_grid = t_grid.numpy()
return self._convection_diffusion_solution(x_start, t_grid, nu, beta=0)
def _convection_onedim(self, t_values, thetas, nus):
n_function_draws = thetas.shape[0]
u_list = []
for i in range(n_function_draws):
u_i = self._convection_onedim_for_one_parameter(
t_values[i, :],
thetas[i].item(),
nus[i].item(),
)
u_list.append(u_i)
u = np.stack(u_list, axis=0)
return torch.from_numpy(u)
def true_solution(self, inputs, thetas, nus):
# inputs: [nf, nt, nx, d]
nf, nt, _, _ = inputs.shape
inputs = rearrange(inputs, "nf nt nx d -> nf (nt nx) d")
ts = inputs[:, :, 0]
xs = inputs[:, :, 1]
xs = xs.unique(dim=1).reshape(nf, -1)
ts = ts.unique(dim=1).reshape(nf, -1)
tr_all = self._convection_onedim(ts, thetas, nus)
grid = rearrange(inputs, "nf (nt nx) d -> nf nt nx d", nt=nt).clone()
grid[:, :, :, 1] /= np.pi * 2
grid = (grid - 0.5) * 2
# (h w) to (x y)
grid_x = grid[:, :, :, 1]
grid_y = grid[:, :, :, 0]
grid = torch.stack((grid_x, grid_y), dim=-1)
tr = F.grid_sample(
tr_all.unsqueeze(1).float(), grid, align_corners=True, mode="bilinear"
).squeeze(1)
tr = rearrange(tr, "nf nt nx -> nf (nt nx) 1")
return tr.float()
@classmethod
def get_mass_rhs_func(cls, x):
def mass_rhs_func(inputs):
nf, nt, _, _ = inputs.shape
mass_rhs = torch.zeros(nf, nt)
return mass_rhs
return mass_rhs_func
@classmethod
def generate_dataset(cls, n_samples, grid, t, tpred=(-1, None, None), *dataset_params):
nu_1, nu_2, theta_1, theta_2 = dataset_params
thetas = theta_1 + (theta_2 - theta_1) * torch.rand(n_samples)
conductivities = nu_1 + (nu_2 - nu_1) * torch.rand(n_samples)
nt = t.shape[0]
nx = grid.shape[0]
ts = repeat(t, "nt -> nf nt", nf=n_samples)
xs = repeat(grid, "nx -> nf nx", nf=n_samples)
inputs = meshgrid(ts, xs)
pde = HeatEquation_1D()
outputs = pde.true_solution(inputs, thetas, conductivities)
outputs = rearrange(outputs, "nf (nt nx) d -> nf nx nt d", nt=nt)
params = repeat(conductivities, "nf -> nf nx 1", nx=nx)
tpred = slice(*tpred)
a, u = outputs[:, :, 0], outputs[:, :, tpred].squeeze(2)
return a, u, params
class PME_1D:
def __init__(self):
pass
def true_solution(self, inputs, degrees, scales):
# inputs: [nf, nt, nx, d]
nf, nt, _, _ = inputs.shape
inputs = rearrange(inputs, "nf nt nx d -> nf (nt nx) d")
ts = inputs[:, :, 0]
xs = inputs[:, :, 1]
degrees = rearrange(degrees, "nf -> nf 1")
scales = rearrange(scales, "nf -> nf 1")
xs = xs * scales
us = degrees * F.relu(ts - xs)
ys = us.pow(1 / degrees)
return rearrange(ys, "nf nt_nx -> nf nt_nx 1")
@classmethod
def get_mass_rhs_func(cls, x):
def mass_rhs_func(inputs):
# nf, nt, _, _ = inputs.shape
degrees = x[:, 0, 0]
ts = inputs[:, :, 0, 0]
a1 = 1 + (1 / degrees)
mass_rhs = (degrees.pow(a1)) / (degrees + 1) * ts.pow(a1)
return mass_rhs
return mass_rhs_func
def _mass_rhs(self, inputs, degrees):
# inputs: [nf, nt, nx, d]
degrees = rearrange(degrees, "nf -> nf 1")
ts = inputs[:, :, 0, 0]
a1 = 1 + (1 / degrees)
return (degrees.pow(a1)) / (degrees + 1) * ts.pow(a1)
@classmethod
def generate_dataset(cls, n_samples, grid, t, tpred=(-1, None, None), *dataset_params):
degree_1, degree_2 = dataset_params
degrees = degree_1 + (degree_2 - degree_1) * torch.rand(n_samples)
scales = torch.ones(n_samples)
nt = t.shape[0]
nx = grid.shape[0]
ts = repeat(t, "nt -> nf nt", nf=n_samples)
xs = repeat(grid, "nx -> nf nx", nf=n_samples)
inputs = meshgrid(ts, xs)
pde = cls()
outputs = pde.true_solution(inputs, degrees, scales)
outputs = rearrange(outputs, "nf (nt nx) d -> nf nx nt d", nt=nt)
params = repeat(degrees, "nf -> nf nx 1", nx=nx)
# a, u = outputs[:, :, 0], outputs[:, :, t.shape[0]//2]
tpred = slice(*tpred)
a, u = outputs[:, :, 0], outputs[:, :, tpred].squeeze(2)
return a, u, params
class StefanPME_1D:
def __init__(self):
self.k_min = 0
self.k_max = 1
def true_solution(self, inputs, p_stars):
# inputs: [nf, nt, nx, d]
soln_list = []
mass_rhs_list = []
for input_, p_star in zip(inputs, p_stars):
soln_i, mass_rhs_i = self._true_solution_one_parameter(input_, p_star)
soln_list.append(soln_i)
mass_rhs_list.append(mass_rhs_i)
return torch.stack(soln_list, dim=0).unsqueeze(-1), torch.stack(mass_rhs_list)
def _true_solution_one_parameter(self, inputs, p_star):
# inputs: [nt, nx, d]
ts_i = inputs[:, 0, 0]
inputs = rearrange(inputs, "nt nx d -> (nt nx) d")
ts, xs = np.split(inputs, 2, -1)
_z1 = root_scalar(partial(StefanPME_1D._z1_objective, p_star=p_star), bracket=(0, 10)).root
_alpha = 2 * np.sqrt(self.k_max) * _z1
# c1
num = 1 - p_star
dem = erf(_alpha / (2 * (np.sqrt(self.k_max))))
c1 = num / dem
# c2
num = p_star
a = _alpha / (2 * np.sqrt(self.k_min))
dem = 1 - erf(a)
c2 = num / dem
# p1
a = xs / (2 * torch.sqrt(self.k_max * ts))
p1 = 1 - c1 * erf(a)
# p2
if self.k_min == 0:
p2 = torch.zeros_like(xs)
else:
a = xs / (2 * torch.sqrt(self.k_min * ts))
p2 = c2 * (1 - erf(a))
# mass_rhs
mass_rhs = self._mass_rhs(ts_i, c1)
x_star = _alpha * torch.sqrt(ts)
p = p1 * (xs <= x_star) + p2 * (xs > x_star)
p[np.isclose(xs, 0)] = 1.0
return p.squeeze(-1), mass_rhs
@classmethod
def _z1_objective(cls, z1, p_star):
a1 = p_star * erf(z1)
a2 = z1 * np.exp(np.power(z1, 2))
b = (1 - p_star) / np.sqrt(np.pi)
return (a1 * a2) - b
@classmethod
def get_mass_rhs_func(cls, x):
def mass_rhs_func(inputs):
# Assumes self.kmax = 1
# inputs: [nf, nt, nx, d]
p_stars = x[:, 0, 0]
mass_rhs = []
for input_, p_star in zip(inputs, p_stars):
ts_i = input_[:, 0, 0]
_z1 = root_scalar(partial(StefanPME_1D._z1_objective, p_star=p_star), bracket=(0, 10)).root
_alpha = 2 * _z1
# c1
num = 1 - p_star
dem = erf(_alpha / 2)
c1 = num / dem
a1 = 2 * np.sqrt(1 / np.pi)
mass_rhs_i = a1 * c1 * torch.sqrt(ts_i)
mass_rhs.append(mass_rhs_i)
mass_rhs = torch.stack(mass_rhs)
return mass_rhs
return mass_rhs_func
def _mass_rhs(self, ts, c1):
a1 = 2 * np.sqrt(self.k_max / np.pi)
return a1 * c1 * torch.sqrt(ts)
@classmethod
def generate_dataset(cls, n_samples, grid, t, tpred=(-1, None, None), *dataset_params):
p_star_1, p_star_2 = dataset_params
p_stars = p_star_1 + (p_star_2 - p_star_1) * torch.rand(n_samples)
nt = t.shape[0]
nx = grid.shape[0]
ts = repeat(t, "nt -> nf nt", nf=n_samples)
xs = repeat(grid, "nx -> nf nx", nf=n_samples)
inputs = meshgrid(ts, xs)
pde = cls()
outputs, mass_rhs = pde.true_solution(inputs, p_stars)
outputs = rearrange(outputs, "nf (nt nx) d -> nf nx nt d", nt=nt)
params = repeat(p_stars, "nf -> nf nx 1", nx=nx)
tpred = slice(*tpred)
a, u = outputs[:, :, 0], outputs[:, :, tpred].squeeze(2)
# return a, u, params, mass_rhs[:, tpred]
return a, u, params
class LinearAdvection_1D:
def __init__(self):
pass
def true_solution(self, inputs, betas):
# inputs: [nf, nt, nx, d]
nf, nt, _, _ = inputs.shape
inputs = rearrange(inputs, "nf nt nx d -> nf (nt nx) d")
ts = inputs[:, :, 0]
xs = inputs[:, :, 1]
betas = rearrange(betas, "nf -> nf 1")
ys = self.h(xs - ts * betas)
return rearrange(ys, "nf nt_nx -> nf nt_nx 1")
def h(self, x):
return (x <= 0.5).float()
@classmethod
def get_mass_rhs_func(cls, x):
def mass_rhs_func(inputs):
# nf, nt, _, _ = inputs.shape
betas = x[:, 0, 0]
ts = inputs[:, :, 0, 0]
mass_rhs = 0.5 + torch.minimum(betas * ts, torch.tensor(0.5))
return mass_rhs
return mass_rhs_func
@classmethod
def generate_dataset(cls, n_samples, grid, t, tpred=(-1, None, None), *dataset_params):
beta_1, beta_2 = dataset_params
betas = beta_1 + (beta_2 - beta_1) * torch.rand(n_samples)
nt = t.shape[0]
nx = grid.shape[0]
ts = repeat(t, "nt -> nf nt", nf=n_samples)
xs = repeat(grid, "nx -> nf nx", nf=n_samples)
inputs = meshgrid(ts, xs)
pde = LinearAdvection_1D()
outputs = pde.true_solution(inputs, betas)
outputs = rearrange(outputs, "nf (nt nx) d -> nf nx nt d", nt=nt)
params = repeat(betas, "nf -> nf nx 1", nx=nx)
tpred = slice(*tpred)
a, u = outputs[:, :, 0], outputs[:, :, tpred].squeeze(2)
return a, u, params
if __name__ == '__main__':
# grid = torch.linspace(0, 1, 500)
# t = torch.linspace(0, 1, 100)
# pde = Burger_1D_Dir(nu=0.001)
# a, u = pde.generate_samples(n_samples=10, u_l_range=(0.75, 0.85), grid=grid, t=t)
# n_t = 100
# n_x = 50
# t = torch.linspace(0, 1, n_t)
# grid = torch.linspace(0, 2 * np.pi, n_x)
# dataset_params = (2, 2, 0, np.pi/8)
# a, u = HeatEquation_1D.generate_dataset(10, grid, t, *dataset_params)
# n_t = 100
# n_x = 100
# t = torch.linspace(0, 1, n_t)
# grid = torch.linspace(0, 1, n_x)
# dataset_params = (2, 3, 1, 1)
# a, u, params = PME_1D.generate_dataset(10, grid, t, (None, None, 5), *dataset_params)
pass