-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathinput_formats.py
106 lines (80 loc) · 3.51 KB
/
input_formats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
from abc import ABC, abstractmethod
import copy
from input_example import InputExample
from utils import augment_sentence, get_span
INPUT_FORMATS = {}
def register_input_format(format_class):
INPUT_FORMATS[format_class.name] = format_class
return format_class
class BaseInputFormat(ABC):
name = None
BEGIN_ENTITY_TOKEN = '['
END_ENTITY_TOKEN = ']'
SEPARATOR_TOKEN = '|'
RELATION_SEPARATOR_TOKEN = '='
QUERY_SEPARATOR_TOKEN = ':'
def format_input(self, example: InputExample, multitask=False, task_descriptor=None):
res = self._format_input(example=example)
if multitask:
name = task_descriptor or example.dataset.task_descriptor or example.dataset.name
res = f'{name} {self.QUERY_SEPARATOR_TOKEN} ' + res
return res
@abstractmethod
def _format_input(self, example: InputExample) -> str:
raise NotImplementedError
@register_input_format
class PlainInputFormat(BaseInputFormat):
"""
This format uses the plain sentence as input.
"""
name = 'plain'
def _format_input(self, example: InputExample) -> str:
return ' '.join(example.tokens)
@register_input_format
class RelationClassificationInputFormat(BaseInputFormat):
"""
Input format for relation classification.
"""
name = 'rel_input'
def _format_input(self, example: InputExample) -> str:
en1_span = [example.entities[0].start, example.entities[0].end]
en2_span = [example.entities[1].start, example.entities[1].end]
words = example.tokens
first, latter, head_first = (en1_span, en2_span, True) if en1_span[0] < en2_span[0] \
else (en2_span, en1_span, False)
s = " ".join(words[:first[0]]) \
+ f" {self.BEGIN_ENTITY_TOKEN} {get_span(words, first)} {self.END_ENTITY_TOKEN} " \
+ " ".join(words[first[1]:latter[0]])
s += f" {self.BEGIN_ENTITY_TOKEN} {get_span(words, latter)} {self.END_ENTITY_TOKEN} " \
+ " ".join(words[latter[1]:])
s += f" The relationship between {self.BEGIN_ENTITY_TOKEN} {get_span(words, en1_span)} " \
f"{self.END_ENTITY_TOKEN} and {self.BEGIN_ENTITY_TOKEN} {get_span(words, en2_span)} " \
f"{self.END_ENTITY_TOKEN} is"
return s.strip()
@register_input_format
class EventInputFormat(BaseInputFormat):
"""
Input format for event extraction, where an input example contains exactly one trigger.
"""
name = 'ace2005_event_with_trigger'
def _format_input(self, example: InputExample) -> str:
triggers = example.triggers
assert len(triggers) <= 1
augmentations = [([(entity.type.natural,)], entity.start, entity.end) for entity in triggers]
return augment_sentence(example.tokens, augmentations, self.BEGIN_ENTITY_TOKEN, self.SEPARATOR_TOKEN,
self.RELATION_SEPARATOR_TOKEN, self.END_ENTITY_TOKEN)
@register_input_format
class SRLInput(BaseInputFormat):
"""
Input format for SRL, where the predicate is marked.
"""
name = 'srl_input'
def _format_input(self, example) -> str:
assert len(example.sentence_level_entities) == 1
start, end = example.sentence_level_entities[0].start, example.sentence_level_entities[0].end
words = copy.copy(example.tokens)
words.insert(end, self.END_ENTITY_TOKEN)
words.insert(start, self.BEGIN_ENTITY_TOKEN)
return ' '.join(words)