-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRotamerSummarizer.java
428 lines (378 loc) · 18.7 KB
/
RotamerSummarizer.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import java.util.*;
import java.io.*;
import org.apache.commons.math3.geometry.euclidean.threed.*;
import org.jgrapht.*;
import org.jgrapht.graph.*;
import org.jgrapht.alg.*;
import com.google.common.collect.*;
import java.util.concurrent.*;
/**
* This class collects together some methods for summarizing rotamer chi distributions.
*/
public class RotamerSummarizer
{
/**
* The minimum probability of a rotamer before it will be considered.
* {@link Settings#ROTAMER_LIBRARY_THRESHOLD} applies first.
*/
public static final double PROBABILITY_THRESHOLD = 0.01;
/** minimum threshold area for a peak to be used */
public static final double PEAK_THRESHOLD = 0.025;
/** the area of a peak is considered the integral over PEAK_SIZE points before and after the maximum */
public static final int PEAK_SIZE = 3;
/** the maximum number of peaks that will be returned */
public static final int MAX_PEAKS = 2;
/**
* The maximum number of normal rotamers to return per position. For normal rotameric amino acids,
* this is what is sounds like. For non-rotameric amino acids, we could get up to MAX_PEAKS *
* MAX_ROTAMERS_PER_POSITION rotamers.
*/
public static final int MAX_ROTAMERS_PER_POSITION = 10;
/** static initializer */
static
{
// check class invariants
if ( PEAK_SIZE < 0 || MAX_PEAKS < 1 )
throw new IllegalArgumentException("check MAX_PEAKS / PEAK_SIZE");
if ( PEAK_THRESHOLD < 0.0 || PEAK_THRESHOLD > 1.0 )
throw new IllegalArgumentException("check PEAK_THRESHOLD");
if ( PROBABILITY_THRESHOLD < 0.0 || PROBABILITY_THRESHOLD > 1.0 )
throw new IllegalArgumentException("check PROBABILITY_THRESHOLD");
}
/** This class is not instantiable. */
private RotamerSummarizer()
{
throw new IllegalArgumentException("not instantiable");
}
/**
* Given a residue, return the possible rotamers. Rotamers are based on the current
* phi and psi values. Note that this might produce some rotamers that clash with
* other parts of the peptide.
*
* Will throw an exception if there are no library data for the specified residue.
*
* Rotamers beneath PROBABILITY_THRESHOLD will be ignored. Non-rotameric degrees of freedom
* will be summarized into several angles using BIN_SIZE and BIN_THRESHOLD.
*
* @param residue the input residue
* @return a nested list of all the angles chi1, chi2, ..., chiN
*/
public static List<List<Double>> getPossibleRotamers(Residue residue)
{
AminoAcid aminoAcid = residue.aminoAcid;
AminoAcid.RotamerType rotamerType = aminoAcid.rotamerType;
double omega = residue.omega.getDihedralAngle();
double phi = residue.phi.getDihedralAngle();
double psi = residue.psi.getDihedralAngle();
if ( rotamerType == AminoAcid.RotamerType.HAS_NO_ROTAMERS )
return ImmutableList.of();
else if ( rotamerType == AminoAcid.RotamerType.SPECIAL )
throw new IllegalArgumentException("no data for special amino acids");
if (rotamerType == AminoAcid.RotamerType.IS_ROTAMERIC)
{
RotamericLibrary rotLib = (RotamericLibrary)RotamerDatabase.getLibrary(aminoAcid, omega);
DiscreteProbabilityDistribution<List<Double>> dpd = rotLib.get(phi,psi);
List<List<Double>> outcomes = dpd.outcomes;
List<Double> probabilities = dpd.inputProbabilities;
// sort in descending order
TreeMap<Double,List<Double>> allRotamers = new TreeMap<>(Collections.reverseOrder());
for (int i=0; i < outcomes.size(); i++)
{
List<Double> outcome = outcomes.get(i);
Double probability = probabilities.get(i);
if ( probability < PROBABILITY_THRESHOLD )
continue;
// map probability to rotamers so we can sort to get the highest probability rotamers
allRotamers.put(probability,outcome);
}
if ( allRotamers.size() == 0 )
throw new IllegalArgumentException("expected to find rotamers (rotameric)");
// only include up to MAX_ROTAMER_PER_POSITION rotamers in the final list
List<List<Double>> prunedRotamers = new LinkedList<>();
for (Double probability : allRotamers.keySet())
{
if ( prunedRotamers.size() > MAX_ROTAMERS_PER_POSITION )
break;
List<Double> thisRotamer = allRotamers.get(probability);
prunedRotamers.add(thisRotamer);
}
if ( prunedRotamers.size() == 0 )
throw new IllegalArgumentException("pruned rotamers cannot be empty");
return prunedRotamers;
}
else if (rotamerType == AminoAcid.RotamerType.NON_ROTAMERIC)
{
NonRotamericLibrary nRotLib = (NonRotamericLibrary)RotamerDatabase.getLibrary(aminoAcid, omega);
DiscreteProbabilityDistribution<NonRotamericLibrary.NonRotamericAngles> dpd = nRotLib.get(phi,psi);
List<NonRotamericLibrary.NonRotamericAngles> outcomes = dpd.outcomes;
List<Double> probabilities = dpd.inputProbabilities;
// find the most probable rotamers
// create sorted map in descending order
TreeMap<Double,NonRotamericLibrary.NonRotamericAngles> allRotamers = new TreeMap<>(Collections.reverseOrder());
for (int i=0; i < outcomes.size(); i++)
{
NonRotamericLibrary.NonRotamericAngles outcome = outcomes.get(i);
Double probability = probabilities.get(i);
if ( probability < PROBABILITY_THRESHOLD )
continue;
allRotamers.put(probability,outcome);
}
List<NonRotamericLibrary.NonRotamericAngles> prunedRotamers = new LinkedList<>();
for (Double probability : allRotamers.keySet())
{
if (prunedRotamers.size() > MAX_ROTAMERS_PER_POSITION)
break;
NonRotamericLibrary.NonRotamericAngles outcome = allRotamers.get(probability);
prunedRotamers.add(outcome);
}
// convert from non-rotameric angles to rotameric angles
List<List<Double>> returnList = new LinkedList<>();
for (NonRotamericLibrary.NonRotamericAngles outcome : prunedRotamers)
{
// convert outcome to rotamer angles in the form of List<Double>
// to do this, we have to deal with the non-rotameric degree of freedom
//
// first, get the standard rotameric angles and the
// enclosed dpd for the standard chi angles
List<Double> rotamericAngles = outcome.getRotamericAngles();
DiscreteProbabilityDistribution<Double> dpd1 = outcome.getDPD();
//System.out.println("phi: " + phi);
//System.out.println("psi: " + psi);
//System.out.println(rotamericAngles);
// get some representative values of the non-rotameric torsion angle
List<Double> nonRotamericAngles = summarize(dpd1);
// combine the rotameric angles with the summarized nonRotamericAngles
// to make several new overall rotamers
for (Double lastAngle : nonRotamericAngles)
{
List<Double> thisRotamer = new LinkedList<>(rotamericAngles);
thisRotamer.add(lastAngle);
returnList.add(thisRotamer);
//returnList.add(ImmutableList.copyOf(thisRotamer));
}
}
if ( returnList.size() == 0 )
throw new IllegalArgumentException("expected to find rotamers (non-rotameric)");
return returnList;
}
// should be unreachable
throw new IllegalArgumentException("unreachable");
}
/**
* Finds the expected value of the given distribution (probability-weighted average
* over all outcomes). Only applies to distributions of doubles.
* @param dpd the distribution
* @return the expected value
*/
public static Double getExpectedValue(DiscreteProbabilityDistribution<Double> dpd)
{
// get data
List<Double> probabilities = new ArrayList<>(dpd.inputProbabilities);
List<Double> outcomes = new ArrayList<>(dpd.outcomes);
// discard duplicate data
// (+180 degrees is the same as -180 degrees)
boolean remove = false;
for (Double d : outcomes)
{
if ( d == -180.0 )
remove = true;
}
if ( remove )
{
for (int i=0; i < probabilities.size(); i++)
{
Double outcome = outcomes.get(i);
if ( outcome == 180.0 )
{
probabilities.remove(i);
outcomes.remove(i);
}
}
}
// normalize
probabilities = normalize(probabilities);
// calculate expected value
double expectedValue = 0.0;
for (int i=0; i < probabilities.size(); i++)
{
Double probability = probabilities.get(i);
Double outcome = outcomes.get(i);
expectedValue += probability * outcome;
}
return expectedValue;
}
/**
* Takes a list of non-negative doubles and normalizes it. That is, each value will
* be divided by the original sum of values to produce a list whose sum is 1.0.
* An exception will be thrown if an input value is negative. Returns a mutable
* ArrayList.
* @param list the input list containin non-negative doubles
* @return the normalized list
*/
public static ArrayList<Double> normalize(List<Double> list)
{
for ( Double d : list )
{
if ( d < 0.0 )
throw new IllegalArgumentException("negative numbers are not allowed");
}
ArrayList<Double> returnList = new ArrayList<>(list);
// calculate sum of probabilities
double sum = 0.0;
for (Double d : returnList)
sum += d;
// normalize probabilities first, since the input probabilities might not be normalized
for (int i=0; i < returnList.size(); i++)
returnList.set(i, returnList.get(i) / sum);
return returnList;
}
/**
* Takes a histogram of double values and returns a small number of doubles
* that are considered representative. These values are selected by finding
* the positions of peaks in the histogram. The histogram is assumed to be
* reasonably smooth and a peak is defined as a point whose neighbors are
* lower in value. Additionally, the area under the peak (PEAK_SIZE points to
* the left and right) must exceed PEAK_THRESHOLD. The peaks are sorted by
* area and the peaks with the largest areas are considered. (At most, MAX_PEAKS
* peaks will be returned.) The expected values of these peaks are calculated
* and returned.
*
* Note -- this does not account for the fact that the interval -180,180 is cyclic.
* Edge peaks might be counted twice, although I think it's unlikely. Also, small
* probability outcomes are pruned from the histogram coming in, so dpd might not
* span the [-180,180] interval.
*
* @param dpd the input distribution
* @return the summarized values
*/
public static List<Double> summarize(DiscreteProbabilityDistribution<Double> dpd)
{
// obtain the underlying data
List<Double> probabilities = normalize(dpd.inputProbabilities);
List<Double> outcomes = dpd.outcomes;
//System.out.println("expected value: " + getExpectedValue(dpd));
//writeCSV(dpd,"dpd.csv");
// sort the distribution
TreeMap<Double,Double> map = new TreeMap<>();
for (int i=0; i < probabilities.size(); i++)
{
Double key = outcomes.get(i);
Double value = probabilities.get(i);
map.put(key,value);
}
// setup arrays
List<Double> peakLocations = new LinkedList<>();
List<Double> peakAreas = new LinkedList<>();
Set<Map.Entry<Double,Double>> entrySet = map.entrySet();
List<Map.Entry<Double,Double>> entryList = new LinkedList<>(entrySet);
Double lastPr = null;
Double nextPr = null;
for (int i=0; i < entryList.size(); i++)
{
Map.Entry<Double,Double> entry = entryList.get(i);
Double thisPr = entry.getValue();
Double outcome = entry.getKey();
if ( i < entryList.size() - 1 )
nextPr = entryList.get(i+1).getValue();
else
nextPr = null;
//System.out.println(i + ", " + outcome + " Pr = " +thisPr);
boolean check = false;
if ( i == 0 && thisPr > nextPr )
check = true;
else if ( i == entryList.size() - 1 && thisPr > lastPr )
check = true;
else if ( i > 0 && i < entryList.size() && thisPr > lastPr && thisPr > nextPr )
check = true;
if ( check )
{
List<Double> theseProbabilities = new LinkedList<>();
List<Double> theseOutcomes = new LinkedList<>();
double sum = 0.0;
//System.out.println("peak is at " + i + ", x = " + outcome);
//System.out.println("range: " + Math.max(0,i-PEAK_SIZE) + " to " + Math.min(entryList.size()-1,i+PEAK_SIZE) );
for (int j=Math.max(0,i-PEAK_SIZE); j < Math.min(entryList.size()-1,i+PEAK_SIZE); j++)
{
Map.Entry<Double,Double> entry2 = entryList.get(j);
Double key = entry2.getKey();
Double value = entry2.getValue();
theseProbabilities.add(value);
theseOutcomes.add(key);
sum += value;
}
//System.out.println("area = " + sum);
if ( sum > PEAK_THRESHOLD )
{
DiscreteProbabilityDistribution<Double> newDPD = new DiscreteProbabilityDistribution<Double>(theseOutcomes, theseProbabilities);
double expectedValue = getExpectedValue(newDPD);
//System.out.println(">>> " + expectedValue);
peakLocations.add(expectedValue);
peakAreas.add(sum);
}
}
lastPr = thisPr;
}
// if there's only one peak, simply return the expected value of the distribution
List<Double> returnList = new LinkedList<>();
if ( peakLocations.size() <= 1 )
returnList.add(getExpectedValue(dpd));
// if there are multiple entries,
// sort peaks by largest area and return at most MAX_PEAKS peak locations
else
{
TreeMap<Double,Double> peakMap = new TreeMap<>();
for (int i=0; i < peakLocations.size(); i++)
{
Double key = peakAreas.get(i);
Double value = peakLocations.get(i);
peakMap.put(key,value);
}
//System.out.println(peakMap);
// iterate backwards
entrySet = peakMap.entrySet();
entryList = new ArrayList<>(entrySet);
ListIterator<Map.Entry<Double,Double>> iterator = entryList.listIterator(entryList.size());
int count = 0;
while ( iterator.hasPrevious() && count < MAX_PEAKS )
{
Map.Entry<Double,Double> entry = iterator.previous();
returnList.add(entry.getValue());
count++;
}
}
// return the result
//System.out.println("final: ");
//System.out.println(returnList);
return ImmutableList.copyOf(returnList);
}
/**
* Writes a comma separated value file for the given histogram.
* @param DPD the distribution to be described
* @param filename the filename to write the CSV to
*/
public static void writeCSV(DiscreteProbabilityDistribution<Double> DPD, String filename)
{
String CSVstring = "";
List<Double> probabilities = DPD.inputProbabilities;
List<Double> outcomes = DPD.outcomes;
for (int i=0; i < probabilities.size(); i++)
CSVstring += outcomes.get(i) + "," + probabilities.get(i) + "\n";
InputFileFormat.writeStringToDisk(CSVstring,filename);
}
/** For testing. */
public static void main(String[] args)
{
DatabaseLoader.go();
List<ProtoAminoAcid> sequence = ProtoAminoAcidDatabase.getSpecificSequence("arg","met","standard_ala","gly","d_proline", "gly", "phe", "val", "hd", "l_pro");
Peptide peptide = PeptideFactory.createPeptide(sequence);
for (int i=0; i < peptide.sequence.size(); i++)
{
peptide = BackboneMutator.mutateOmega(peptide, i);
peptide = BackboneMutator.mutatePhiPsi(peptide, i);
peptide = RotamerMutator.mutateChis(peptide, i);
}
peptide = PeptideFactory.setHairpinAngles(peptide);
Residue residue = peptide.sequence.get(0);
System.out.println(getPossibleRotamers(residue));
}
}