Skip to content

amirharati/ubuntu_dialogs_topic_model

Repository files navigation

Introduction

In this project, I have used a small sub section of Ubuntu dialogs (section 4) to test topic modeling using two models:

  • baseline LDA model.
  • doc2vec clustering model.

Requirements

  • Python 3.6
  • Numpy
  • NLTK
  • Gensim

How to Use

There are few files that are used to train and test LDA and doc2vec models. After training (see below), use display_top_topics_baseline.py to see the top topics for LDA and display_top_topics_doc2vec.py to see top topics for doc2vec model. Use topic_detector_lda_baseline.py and topic_detector_doc2vec.py to see the topic detected for a new tsv file.

Example:

python topic_detector_lda_baseline.py data/dialogs/4/1.tsv

python topic_detector_doc2vec.py data/dialogs/4/1.tsv

python display_top_topics_baseline.py

before training run:

python data_prep.py

This will create a file name data/dialogs_4.txt that contains all dialogs for section 4 and used in the next steps.

Baseline Model

Baseline model is a LDA with a simple NLP pipeline (e.g. remving stopwords, tfidf etc). To train the model:

First create an iterable corpus object and store it:

python create_corpus.py

This will save the corpus in tmp directory.

Train:

python train_topic_model_lda_baseline.py

Doc2Vec Model

For doc2vec model we first train the doc2vec model to convert docs into dense vectors. For this project, I choose a small dimension of 10. Then we convert the data into vectors and finally we use a clustering algorithm to find the clusters/topics.

First create the corpus:

python create_tagged_corpus.py

This save the corpus in tmp directory.

Second extract features:

python extract_feature_doc2vec.py

This will save the features in tmp directory.

Third cluster:

python cluster_doc2vec_features.py

Now you should have the trianed models in tmp directory.

Samples outputs

LDA top topics

**(py36) [bash]:python display_top_topics_baseline.py **

2018-03-18 17:49:08,912 : INFO : loaded corpus index from tmp/dialogs4-corpus.mm.index

2018-03-18 17:49:08,912 : INFO : initializing cython corpus reader from tmp/dialogs4-corpus.mm

2018-03-18 17:49:08,913 : INFO : accepted corpus with 268895 documents, 51147 features, 4530364 non-zero entries

2018-03-18 17:49:08,913 : INFO : loading LdaModel object from tmp/lda_topics.model

2018-03-18 17:49:08,914 : INFO : loading expElogbeta from tmp/lda_topics.model.expElogbeta.npy with mmap=None

2018-03-18 17:49:08,942 : INFO : setting ignored attribute state to None

2018-03-18 17:49:08,943 : INFO : setting ignored attribute dispatcher to None

2018-03-18 17:49:08,943 : INFO : setting ignored attribute id2word to None

2018-03-18 17:49:08,943 : INFO : loaded tmp/lda_topics.model

2018-03-18 17:49:08,943 : INFO : loading LdaState object from tmp/lda_topics.model.state

2018-03-18 17:49:09,085 : INFO : loaded tmp/lda_topics.model.state

2018-03-18 17:49:09,145 : INFO : topic #0 (0.010): 0.037*"upgrade" + 0.030*"update" + 0.024*"apt" + 0.024*"sources"

2018-03-18 17:49:09,145 : INFO : topic #45 (0.010): 0.059*"bit" + 0.024*"core" + 0.021*"intel" + 0.019*"yup"

2018-03-18 17:49:09,146 : INFO : topic #62 (0.010): 0.042*"kill" + 0.034*"ps" + 0.027*"process" + 0.021*"processes"

2018-03-18 17:49:09,146 : INFO : topic #96 (0.010): 0.031*"ping" + 0.020*"sessions" + 0.018*"dns" + 0.017*"pay"

2018-03-18 17:49:09,146 : INFO : topic #13 (0.010): 0.042*"ftp" + 0.030*"nick" + 0.028*"rpm" + 0.016*"alien"

2018-03-18 17:49:09,147 : INFO : topic #46 (0.010): 0.027*"ls" + 0.024*"dir" + 0.020*"automatix" + 0.017*"directories"

2018-03-18 17:49:09,147 : INFO : topic #57 (0.010): 0.027*"modules" + 0.024*"module" + 0.016*"cron" + 0.015*"modprobe"

2018-03-18 17:49:09,147 : INFO : topic #7 (0.010): 0.036*"noob" + 0.028*"screenshot" + 0.021*"split" + 0.018*"unknown"

2018-03-18 17:49:09,148 : INFO : topic #59 (0.010): 0.026*"suspend" + 0.025*"spanish" + 0.024*"hibernate" + 0.023*"force"

2018-03-18 17:49:09,148 : INFO : topic #3 (0.010): 0.033*"edition" + 0.027*"base" + 0.019*"banned" + 0.018*"hopefully"

TOP TOPICS

topic 0 upgrade-update-apt-sources

topic 45 bit-core-intel-yup

topic 62 kill-ps-process-processes

topic 96 ping-sessions-dns-pay

topic 13 ftp-nick-rpm-alien

topic 46 ls-dir-automatix-directories

topic 57 modules-module-cron-modprobe

topic 7 noob-screenshot-split-unknown

topic 59 suspend-spanish-hibernate-force

topic 3 edition-base-banned-hopefully

doc2vec top topics

(py36) [bash]:python display_top_topics_doc2vec.py

TOP TOPICS

95 --- http-paste-com-enter

66 --- channel-offtopic-support-people

28 --- upgrade-version-release-install

43 --- channel-irc-join-client

1 --- gnome-install-kde-desktop

50 --- linux-channel-support-offtopic

5 --- root-password-sudo-user

94 --- wireless-card-get-work

10 --- gnome-firefox-get-system

63 --- install-boot-windows-drive

topic detection

tsv file

(py36) [bash]:cat data/dialogs/4/1000.tsv

2012-09-25T14:48:00.000Z Kingsy so does anyone in here use the xorg-edgers ppa ? out of curiousity ?

2012-09-25T14:48:00.000Z winxpvbox Kingsy ppas are unsupported 3rd party packages

2012-09-25T14:49:00.000Z winxpvbox Kingsy if something goes wrong you are on your own

2012-09-25T14:49:00.000Z Kingsy winxpvbox I know, I am asking if anyone in here uses it..

LDA model

(py36) [bash]:python topic_detector_.py data/dialogs/4/1000.tsv

topic_detector_doc2vec.py topic_detector_lda_baseline.py

(py36) [bash]:python topic_detector_lda_baseline.py data/dialogs/4/1000.tsv

2018-03-18 17:52:11,142 : INFO : loaded corpus index from tmp/dialogs4-corpus.mm.index

2018-03-18 17:52:11,142 : INFO : initializing cython corpus reader from tmp/dialogs4-corpus.mm

2018-03-18 17:52:11,143 : INFO : accepted corpus with 268895 documents, 51147 features, 4530364 non-zero entries

2018-03-18 17:52:11,143 : INFO : loading TfidfModel object from tmp/tfidf.model

2018-03-18 17:52:11,194 : INFO : loaded tmp/tfidf.model

2018-03-18 17:52:11,195 : INFO : loading LdaModel object from tmp/lda_topics.model

2018-03-18 17:52:11,196 : INFO : loading expElogbeta from tmp/lda_topics.model.expElogbeta.npy with mmap=None

2018-03-18 17:52:11,225 : INFO : setting ignored attribute state to None

2018-03-18 17:52:11,225 : INFO : setting ignored attribute dispatcher to None

2018-03-18 17:52:11,225 : INFO : setting ignored attribute id2word to None

2018-03-18 17:52:11,226 : INFO : loaded tmp/lda_topics.model

2018-03-18 17:52:11,226 : INFO : loading LdaState object from tmp/lda_topics.model.state

2018-03-18 17:52:11,333 : INFO : loaded tmp/lda_topics.model.state

TOPICS:

topic 79 vmware-virtualbox-virtual-irssi probablity: 0.2207199

topic 58 pidgin-gaim-msn-opera probablity: 0.19551224

topic 54 headers-clock-compiling-operating probablity: 0.11093143

topic 69 j-bootable-perfect-distribution probablity: 0.094964825

topic 48 ssh-server-remote-secure probablity: 0.08262363

topic 49 ppa-nfs-txt-classic probablity: 0.048476804

topic 72 xorg-conf-x-resolution probablity: 0.041110646

doc2vec

(py36) [bash]:python topic_detector_doc2vec.py data/dialogs/4/1000.tsv

2018-03-18 17:54:17,310 : INFO : loading Doc2Vec object from tmp/doc2vec.model

2018-03-18 17:54:17,528 : INFO : loading vocabulary recursively from tmp/doc2vec.model.vocabulary.* with mmap=None

2018-03-18 17:54:17,528 : INFO : loading trainables recursively from tmp/doc2vec.model.trainables.* with mmap=None

2018-03-18 17:54:17,528 : INFO : loading wv recursively from tmp/doc2vec.model.wv.* with mmap=None

2018-03-18 17:54:17,528 : INFO : loading docvecs recursively from tmp/doc2vec.model.docvecs.* with mmap=None

2018-03-18 17:54:17,528 : INFO : loaded tmp/doc2vec.model

TOPICS:

topic 28 upgrade-version-release-install probablity: 100.0

tsv file

(py36) [bash]:cat data/dialogs/4/100000.tsv

2008-11-26T06:50:00.000Z |MUSE| I just installed ubuntu-server. What would I need to install to get a graphical application to run over ssh, like: ssh -X 10.10.10.10 psp.

2008-11-26T06:52:00.000Z |MUSE| fiXXXerMet: this application does not have a command-line. :/

2008-11-26T06:53:00.000Z n8tuser |MUSE| -> your psp has to have an Xserver also

2008-11-26T06:54:00.000Z n8tuser |MUSE| -> provide a better information

LDA model

(py36) [bash]:python topic_detector_lda_baseline.py data/dialogs/4/100000.tsv

2018-03-18 17:55:19,132 : INFO : loaded corpus index from tmp/dialogs4-corpus.mm.index

2018-03-18 17:55:19,132 : INFO : initializing cython corpus reader from tmp/dialogs4-corpus.mm

2018-03-18 17:55:19,132 : INFO : accepted corpus with 268895 documents, 51147 features, 4530364 non-zero entries

2018-03-18 17:55:19,132 : INFO : loading TfidfModel object from tmp/tfidf.model

2018-03-18 17:55:19,183 : INFO : loaded tmp/tfidf.model

2018-03-18 17:55:19,183 : INFO : loading LdaModel object from tmp/lda_topics.model

2018-03-18 17:55:19,184 : INFO : loading expElogbeta from tmp/lda_topics.model.expElogbeta.npy with mmap=None

2018-03-18 17:55:19,203 : INFO : setting ignored attribute state to None

2018-03-18 17:55:19,203 : INFO : setting ignored attribute dispatcher to None

2018-03-18 17:55:19,203 : INFO : setting ignored attribute id2word to None

2018-03-18 17:55:19,203 : INFO : loaded tmp/lda_topics.model

2018-03-18 17:55:19,203 : INFO : loading LdaState object from tmp/lda_topics.model.state

2018-03-18 17:55:19,300 : INFO : loaded tmp/lda_topics.model.state

TOPICS:

topic 48 ssh-server-remote-secure probablity: 0.39898354

topic 66 fonts-unity-es-font probablity: 0.160864

topic 39 compiz-beryl-effects-fusion probablity: 0.12017661

topic 13 ftp-nick-rpm-alien probablity: 0.051770627

topic 72 xorg-conf-x-resolution probablity: 0.051737484

doc2vec

(py36) [bash]:python topic_detector_doc2vec.py data/dialogs/4/100000.tsv

2018-03-18 17:55:32,448 : INFO : loading Doc2Vec object from tmp/doc2vec.model

2018-03-18 17:55:32,656 : INFO : loading vocabulary recursively from tmp/doc2vec.model.vocabulary.* with mmap=None

2018-03-18 17:55:32,656 : INFO : loading trainables recursively from tmp/doc2vec.model.trainables.* with mmap=None

2018-03-18 17:55:32,656 : INFO : loading wv recursively from tmp/doc2vec.model.wv.* with mmap=None

2018-03-18 17:55:32,656 : INFO : loading docvecs recursively from tmp/doc2vec.model.docvecs.* with mmap=None

2018-03-18 17:55:32,656 : INFO : loaded tmp/doc2vec.model

TOPICS:

topic 6 server-ssh-desktop-x probablity: 100.0

TODO

  • Develope metric and tools to directly compare the performance: By inspection, we can see doc2vec produce relatively interesting results but I have not conducted any scientific comparsion between two models.
  • Doc2Vec model is very sensetive to some of its hyper-params. I find out when I train it for more passes the overall results degrades. I think the model overfit due to small dataset. However, this needs more investigations.
  • Tune the algorithms: I have not spend a lot of time to tune these algorithms. There are a lot of directions (e.g. hyper-params, NLP pipeline etc) to tune the performnace.
  • Use sequential models: Both models are using bag of words. Using sequential models like LSTM (for classification) might be helpful.
  • Train on large dataset: This subset of ubuntu dialog is relatively small and not very good for word2vec and doc2vec models.
  • Use average word2vec model on pretrained Google News corpus: This might actually help since we will have good word2vec models.

About

basic topic modeling

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages