-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtrain.py
173 lines (141 loc) · 6.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# adapted from PyTorch tutorials
import copy
import time
from typing import List, Tuple, Optional
import torch
import torch.optim as optim
from torch import nn
from data import AudioVideo, AudioVideo3D
from kissing_detector import KissingDetector, KissingDetector3DConv
ExperimentResults = Tuple[Optional[nn.Module], List[float], List[float]]
def _get_params_to_update(model: nn.Module,
feature_extract: bool) -> List[nn.parameter.Parameter]:
params_to_update = model.parameters()
if feature_extract:
print('Params to update')
params_to_update = []
for name, param in model.named_parameters():
if param.requires_grad is True:
params_to_update.append(param)
print("*", name)
else:
print('Updating ALL params')
return params_to_update
def train_kd(data_path_base: str,
conv_model_name: Optional[str],
num_epochs: int,
feature_extract: bool,
batch_size: int,
use_vggish: bool = True,
num_workers: int = 4,
shuffle: bool = True,
lr: float = 0.001,
momentum: float = 0.9,
use_3d: bool = False) -> ExperimentResults:
num_classes = 2
try:
if use_3d:
kd = KissingDetector3DConv(num_classes, feature_extract, use_vggish)
else:
kd = KissingDetector(conv_model_name, num_classes, feature_extract, use_vggish=use_vggish)
except ValueError:
# if the combination is not valid
return None, [-1.0], [-1.0]
params_to_update = _get_params_to_update(kd, feature_extract)
av = AudioVideo3D if use_3d else AudioVideo
datasets = {set_: av(f'{data_path_base}/{set_}') for set_ in ['train', 'val']}
dataloaders_dict = {x: torch.utils.data.DataLoader(datasets[x],
batch_size=batch_size,
shuffle=shuffle, num_workers=num_workers)
for x in ['train', 'val']}
# optimizer_ft = optim.SGD(params_to_update, lr=lr, momentum=momentum)
optimizer_ft = optim.Adam(params_to_update, lr=lr)
# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
return train_model(kd,
dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs,
is_inception=(conv_model_name == "inception"))
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False):
since = time.time()
val_acc_history = []
val_f1_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
best_f1 = 0.0
# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
running_tp = 0
running_fp = 0
running_fn = 0
# Iterate over data.
for a, v, labels in dataloaders[phase]:
a = a.to(device)
v = v.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
# Special case for inception because in training it has an auxiliary output. In train
# mode we calculate the loss by summing the final output and the auxiliary output
# but in testing we only consider the final output.
if is_inception and phase == 'train':
# https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
outputs, aux_outputs = model(a, v)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4 * loss2
else:
outputs = model(a, v)
loss = criterion(outputs, labels)
_, preds = torch.max(outputs, 1)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * a.size(0)
running_corrects += torch.sum(preds == labels.data)
running_tp += torch.sum((preds == labels.data)[labels.data == 1])
running_fp += torch.sum((preds != labels.data)[labels.data == 1])
running_fn += torch.sum((preds != labels.data)[labels.data == 0])
epoch_loss = running_loss / len(dataloaders[phase].dataset)
n = len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / n
tp = running_tp.double()
fp = running_fp.double()
fn = running_fn.double()
p = tp / (tp + fp)
r = tp / (tp + fn)
epoch_f1 = 2 * p * r / (p + r)
print('{} Loss: {:.4f} F1: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_f1, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
if phase == 'val' and epoch_f1 > best_f1:
best_f1 = epoch_f1
best_model_wts = copy.deepcopy(model.state_dict())
if phase == 'val':
val_acc_history.append(float(epoch_acc))
val_f1_history.append(float(epoch_f1))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val F1 : {:4f}'.format(best_f1))
print('Best val Acc : {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history, val_f1_history