-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmovies_cleaning.py
178 lines (129 loc) · 6.35 KB
/
movies_cleaning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#Load Requisite Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import re
from sklearn.utils import _to_object_array
pd.options.mode.chained_assignment = None # default='warn'
#Read in data
df = pd.read_csv(r'\lb_tmdb.csv')
#Read in secondary LB sources
ratings = pd.read_csv(r'\ratings.csv')
reviews = pd.read_csv(r'\reviews.csv')
diary = pd.read_csv(r'\diary.csv')
############### DIARY SECTION ###############
#Initialize Count column
diary['watch_count'] = 1
for i in range (0,len(diary)):
#Make an array of the titles so far
titles = diary['Name'][:i]
#Get counts of the array and store in dictionary
titles_counts = titles.value_counts().to_dict()
if diary['Name'][i] not in titles_counts and diary['Rewatch'][i]=='Yes':
diary['watch_count'][i] = 2
#Group by title
diary = diary.groupby(['Name']).sum()
diary = diary.sort_values(by='watch_count', ascending=False).reset_index()
diary = diary[['Name','watch_count']]
#Add into main df, create total minutes of that film watched
df = df.merge(diary, on=['Name'], how='left')
df['watch_count'] = np.where(df['watch_count'].isnull(),1,df['watch_count'])
df['min_watched'] = df['watch_count'] * df['runtime']
#Ratings and Revews join on Name and Date
df = df.merge(ratings, on=['Date', 'Name'], how='left')
df.drop(['Year_y','Letterboxd URI'], axis=1, inplace=True)
df = df.merge(reviews, on=['Date', 'Name'], how='left')
df.drop(['Rating_y','Letterboxd URI','Year','Rewatch','Tags','Watched Date'], axis=1, inplace=True)
#Delete secondary dfs
del ratings, reviews, diary
#Drop the _x suffix
df = df.rename(columns = lambda v: re.sub('_x','',v))
#If rating is na fill it with 0, else keep
df['Rating'] = np.where(df['Rating'].isna(),0,df['Rating'])
#Review if there is something 1 else 0
df['Review'] = np.where(df['Review'].notna(),1,0)
#Filter out where id == 0 for tv shows/movies with no match in the database
df = df[df['id']!=0]
############### DATE SECTION ###############
#Rename Date to Logged_Date
df.rename(columns={'Date':'Logged_Date'}, inplace=True)
#Augmenting Logged Date Values
df['Logged_DOW'] = pd.to_datetime(df['Logged_Date'], format='%Y-%m-%d').dt.weekday
df['Logged_DOW'] = df['Logged_DOW'] + 1
df['Logged_Month'] = pd.to_datetime(df['Logged_Date'], format='%Y-%m-%d').dt.month
df['Logged_Year'] = pd.to_datetime(df['Logged_Date'], format='%Y-%m-%d').dt.year
df['Logged_Week'] = pd.to_datetime(df['Logged_Date'], format='%Y-%m-%d').dt.isocalendar().week
#Group by date and count/sum ID values
temp = df.groupby('Logged_Date')['id'].aggregate(['count',sum])
temp.reset_index(level=0, inplace=True)
#How many movies I watched that day
df = df.merge(temp, on='Logged_Date', how='left')
df.drop('sum', axis=1, inplace=True)
df.rename(columns={'count': 'Daily_Movie_Count'}, inplace=True)
#Group by year/week and aggregate to count and sum ID values
temp = df.groupby(['Logged_Year','Logged_Week'])['id'].aggregate(['count',sum])
temp.reset_index(level=0, inplace=True)
temp.reset_index(level=0, inplace=True)
#How many movies I watched that week
df = df.merge(temp, on=['Logged_Year', 'Logged_Week'], how='left')
df.drop('sum', axis=1, inplace=True)
df.rename(columns={'count': 'Weekly_Movie_Count'}, inplace=True)
############### GENRE SECTION ###############
#Remove TV Movie and Family Genres
df.genres = df.genres.str.replace('{\'id\': 10751, \'name\': \'Family\'},','')
df.genres = df.genres.str.replace('{\'id\': 10770, \'name\': \'TV Movie\'},','')
df.genres = df.genres.str.replace('{\'id\': 10751, \'name\': \'Family\'}','')
df.genres = df.genres.str.replace('{\'id\': 10770, \'name\': \'TV Movie\'}','')
#Remove extra charecters from genre strings
df['genres'].replace(to_replace='[0-9]+', value='',inplace=True,regex=True)
df['genres'].replace(to_replace='\{\'id\'\: \, \'name\'\:', value='',inplace=True,regex=True)
df['genres'].replace(to_replace='\}', value='',inplace=True,regex=True)
df['genres'].replace(to_replace=' ', value='',inplace=True,regex=True)
df['genres'].replace(to_replace='\,\]', value=']',inplace=True,regex=True)
#If no genre, replace with 'none'
df['genres'] = np.where(df['genres']=='[]','[none]',df['genres'])
#Get a list of all the unique genres
vals = pd.Series(df['genres']).tolist()
vals = str(vals)
vals = vals.replace('\"','')
vals = vals.replace('\'','')
vals = vals.replace('[','')
vals = vals.replace(']','')
vals = vals.replace(' ','')
vals = vals.split(",")
unique_genres = []
for x in vals:
if x not in unique_genres:
unique_genres.append(x)
#For each genre, if that genre appears in the list of genres for a given movie True else False
for col in unique_genres:
df[col] = df['genres'].apply(lambda x: col in x)
#Convert them all to Boolean 0s and 1s
df[unique_genres] = df[unique_genres].apply(lambda x: x.astype('int'))
#Create new romcom genre column
df['Rom_Com'] = np.where(((df['Romance']==1) & (df['Comedy']==1)),1,0)
df.loc[((df['Romance']==1) & (df['Rom_Com']==1)),'Romance'] = 0
df.loc[((df['Comedy']==1) & (df['Rom_Com']==1)),'Comedy'] = 0
#Rename ScienceFiction
df.rename(columns={'ScienceFiction':'Sci_Fi'}, inplace=True)
#Drop the none and genre columns
df.drop(['none','genres'], axis=1, inplace=True)
#Convert language column to boolean for whether language is English
df['original_language'] = np.where(df['original_language']=='en',1,0)
df.rename(columns={'original_language':'english_language'}, inplace=True)
############### MISC NEW ADDITIONS SECTION ###############
#Replace empty revenue values with 0
df['runtime'] = np.where(df['runtime'].isnull(),0,df['runtime'])
df['runtime'] = np.where(df['runtime']=='None',0,df['runtime'])
#Add in new credit-related data
credits = pd.read_csv(r'\movie_stats.csv')
credits.drop(['Date','Name'], axis=1, inplace=True)
df = df.merge(credits, on=['id','Year'], how='left')
#If these new values are NA (aka weren't pulled in by API) set as 0
df['female_roles'] = np.where(df['female_roles'].isnull(),0,df['female_roles'])
df['female_driven'] = np.where(df['female_driven'].isnull(),0,df['female_driven'])
df['female_directed'] = np.where(df['female_directed'].isnull(),0,df['female_directed'])
#Show cleaned data
print(df)
#Print to CSV
df.to_csv(r'\movie_data_cleaned.csv',header=True, index = False)