-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pinn_on_wang_data.py
461 lines (458 loc) · 27.6 KB
/
train_pinn_on_wang_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
from methods.generate_training_set import *
from methods.plot_figures import *
from torch.utils.data import DataLoader, TensorDataset
import torch.multiprocessing as mp
########################################################################################################################
# start the main script
if __name__ == '__main__':
isATest = False
# set the training data
model_name = 'wang' # model we use to generate the synthetic data for data cost
rhs_name = 'hh' # the misspecified right hand side model to be used in gradient cost
snr_in_db = 30 # signal to noise ratio in dB for the synthetic data generation
scaled_domain_size = 10 # size of the domain for the scaled input
if isATest:
nSamples = 10
nPerBatch = 2
maxIter = 101
plotEvery = 10
else:
nSamples = 500
nPerBatch = 50
maxIter = 400001
plotEvery = 20000
######################################################################################################
# set the folders for figures and pickles
figureFolder = direcory_names['figures']
modelFolder = direcory_names['models']
pickleFolder = direcory_names['pickles']
# create folder for figure storage
FigFolderName = figureFolder + '/' + model_name.lower() + '_data_' + device.type
# create the folder for data storage
ModelFolderName = modelFolder + '/' + model_name.lower() + '_data_' + device.type
# creat folder for pickles
PickleFolderName = pickleFolder + '/' + model_name.lower() + '_data_' + device.type
# folder to read the training data from
TrainingSetFolderName = modelFolder + '/' + model_name.lower() + '_data'
if isATest:
ModelFolderName = ModelFolderName + '_test'
FigFolderName = FigFolderName + '_test'
PickleFolderName = PickleFolderName + '_test'
if not os.path.exists(FigFolderName):
os.makedirs(FigFolderName)
if not os.path.exists(ModelFolderName):
os.makedirs(ModelFolderName)
if not os.path.exists(PickleFolderName):
os.makedirs(PickleFolderName)
if not os.path.exists(TrainingSetFolderName):
os.makedirs(TrainingSetFolderName)
####################################################################################################################
# set up the colour wheel for plotting output at different training samples - this will be useful for plotting
colours = plt.cm.PuOr(np.linspace(0, 1, nSamples))
# make a throwaway counntour plot to generate a heatmap of conductances
fig, ax = plt.subplots(1, 1, figsize=(10, 6), dpi=400)
Z = [[0, 0], [0, 0]]
levels = np.linspace(0, nSamples - 1,
nSamples) # in this case we want to iterate over samples rather than values of parameters
cond_heatmap = plt.contourf(Z, levels, cmap='PuOr')
plt.clf()
#######################################################################################################
# load voltage protocol and get times at which we want to train the pinn
load_protocols
# generate the segments with B-spline knots and intialise the betas for splines
jump_indeces, times_roi, voltage_roi, knots_roi, *_ = generate_knots(times)
jumps_odd = jump_indeces[0::2]
jumps_even = jump_indeces[1::2]
nSegments = len(jump_indeces[:-1])
# use collocation points as an array to get the training times
unique_times = np.unique(np.hstack(knots_roi))
####################################################################################################################
# generate the input sample for training the PINN and generate all necessseary intermediate values for the training
ArchTestFlag = False
training_set_files = [name for name in os.listdir(TrainingSetFolderName) if name.endswith('.npy') and 'train' in name]
if len(training_set_files) > 0:
# load stacked domain and measured current from files
stacked_domain = pt.tensor(np.load(TrainingSetFolderName + '/stacked_scaled_domain_used_for_training.npy'),
dtype=pt.float32).requires_grad_(True)
stacked_domain_unscaled = pt.tensor(np.load(TrainingSetFolderName + '/stacked_unscaled_domain_used_for_training.npy'),
dtype=pt.float32).requires_grad_(True)
IC_stacked_domain = pt.tensor(np.load(TrainingSetFolderName + '/IC_stacked_domain_used_for_training.npy'),
dtype=pt.float32).requires_grad_(True)
measured_current = np.load(TrainingSetFolderName + '/current_data_used_for_training.npy')
measured_current_tensor = pt.tensor(measured_current, dtype=pt.float32).requires_grad_(True)
else:
t_domain_unscaled, t_domain, param_sample_unscaled, param_sample, measured_current_tensor, pinn_state = generate_HH_training_set_to_files(
unique_times,
nSamples, model_name=model_name, snr_db=snr_in_db,
scaled_domain_size=scaled_domain_size, modelFolder=TrainingSetFolderName)
stacked_domain_unscaled = stack_inputs(t_domain_unscaled, param_sample_unscaled)
stacked_domain = stack_inputs(t_domain, param_sample)
IC_t_domain = pt.tensor([unique_times[0]], dtype=pt.float32)
IC_stacked_domain = stack_inputs(IC_t_domain, param_sample)
# derive other necessary values for training
measured_current = measured_current_tensor[0, :].detach().numpy()
IC = pt.tensor([0, 1]) # I think for training on Kemp, we have nothing to compare our initial conditions to.
t_scaling_coeff = scaled_domain_size / unique_times[-1]
param_scaling_coeff = scaled_domain_size / pt.max(stacked_domain_unscaled)
# send everything to device
stacked_domain_unscaled = stacked_domain_unscaled.to(device)
stacked_domain = stacked_domain.to(device)
measured_current_tensor = measured_current_tensor.to(device)
IC_stacked_domain = IC_stacked_domain.to(device)
IC = IC.to(device)
####################################################################################################################
# set up the neural network
domain_shape = stacked_domain.shape
nLayers = 4
nHidden = 500
nOutputs = 2
nInputs = domain_shape[-1]
# define a neural network to train
pinn = FCN(nInputs, nOutputs, nHidden, nLayers).to(device)
# give this PINN a name for saving
pinnName = (rhs_name.lower() + '_' + str(nLayers) + '_layers_' + str(nHidden) + '_nodes_'
+ str(nInputs) + '_ins_' + str(nOutputs) + '_outs')
########################################################################################################################
# storing parameter names for plotting
all_names = [name for _, (name, _) in enumerate(pinn.named_parameters())]
# get unique layer names
first_layer_name = all_names[0].split('.')[0]
last_layer_name = all_names[-1].split('.')[0]
hidden_layer_names = [name.split('.')[0] + '.' + name.split('.')[1] for name in all_names[2:-2]]
# drip elements of layer list that are duplicates but preserve order - done in weird way from stackoverflow!
layer_names = [first_layer_name] + list(dict.fromkeys(hidden_layer_names)) + [last_layer_name]
########################################################################################################################
# define the optimiser and the loss function weights
optimiser = pt.optim.Adam(pinn.parameters(), lr=1e-4, weight_decay=1e-4)
## at this stage, everything that is used for training has to be on the device!
########################################################################################################################
# check if we already have pre-trained weights for this pinn configuration in the modelFolder
previous_training_output = ModelFolderName + '/' + pinnName + '.pth'
if os.path.exists(previous_training_output):
# make sure we can load networks across devices
checkpoint = pt.load(previous_training_output, map_location=device, weights_only=True)
print('Pre-trained weights found. Loading the network.')
if 'model_state_dict' in checkpoint.keys():
pinn.load_state_dict(checkpoint['model_state_dict'])
# check if checkpoint contains the key optimiser state
if 'optimizer_state_dict' in checkpoint.keys():
optimiser.load_state_dict(checkpoint['optimizer_state_dict'])
if 'epoch' in checkpoint.keys():
firstIter = checkpoint['epoch']
if 'lambdas' in checkpoint.keys():
lambdas = checkpoint['lambdas']
if 'loss_names' in checkpoint.keys():
all_cost_names = checkpoint['loss_names']
# then rename all files in the model folder by adding '_epoch' + str(firstIter) to the end of the name
for filename in os.listdir(ModelFolderName):
if filename.endswith('.pth'):
os.rename(ModelFolderName + '/' + filename,
ModelFolderName + '/' + filename[:-4] + '_epoch_' + str(firstIter) + '.pth')
if filename.endswith('.pkl'):
os.rename(ModelFolderName + '/' + filename,
ModelFolderName + '/' + filename[:-4] + '_epoch_' + str(firstIter) + '.pkl')
else:
print('No model state found in the checkpoint. Initalsing fist iteation')
firstIter = 0
pinn, lambdas, all_cost_names = initialise_optimisation(pinn)
else:
print('No pre-trained weights found. Initialising the network.')
# initialise the costs
firstIter = 0
pinn, lambdas, all_cost_names = initialise_optimisation(pinn)
########################################################################################################################
# precompute the right hand side of the ODE for the PINN
pinn_state = pinn(stacked_domain)
precomputed_RHS_params = RHS_tensors_precompute(unique_times, pinn_state, stacked_domain_unscaled, device)
########################################################################################################################
## plots to check the network architecture
# plot the activation functions of the network as a function of domain
# fig, axes = plot_layers_as_bases(pinn, t_domain, t_domain)
# axes[-1].set_xlabel('Input domain at initialisation')
# plt.tight_layout()
# # save the figure
# plt.savefig(figureFolder + '/Activators_as_basis.png',dpi=400)
# # plt.show()
# plot the weights and biases of the network to check if everything is set correctly
# marks = [int(i) for i in np.linspace(0, nHidden, 3)]
# fig, axes = plot_pinn_params_all_inputs(pinn)
# # set the suptitle
# fig.suptitle('test', fontsize=16)
# plt.subplots_adjust(left=0, right=1, wspace=0.1, hspace=1)
# # save the figure
# fig.savefig(FigFolderName + '/Weights_and_biases.png', dpi=400)
####################3##################################################################################################
# create a tensor dataset - we must include parts of RHS parameters that are precomputed to split them into appropriate parts
# note that precomputed_RHS_params is a tuple of tensors - we need to unpack it to send it into the dataloader
dataset = TensorDataset(stacked_domain, *precomputed_RHS_params, measured_current_tensor)
# if the device we use is cpu, set num_workers to 60, if it is cuda then set them to 0
num_workers = 0
if device.type == 'cuda':
num_workers = 0
elif device.type == 'cpu':
# have not setup multiprocessing properly, so this does not work yet
num_workers = min(60, os.cpu_count())
print(f'Number of workers used:{num_workers}')
dataloader = DataLoader(dataset, batch_size=nPerBatch, shuffle=False, num_workers=num_workers,
generator=worker_generator)
# send the IC domain to device
########################################################################################################################
rhs_error_state_weights = [1, 1]
scaling_coeffs = [t_scaling_coeff, param_scaling_coeff, rhs_error_state_weights]
stored_costs = {name: [] for name in all_cost_names}
loss_seq = []
# start the optimisation loop
for i in tqdm(range(firstIter, firstIter + maxIter)):
# prepare losses for cumulation
running_loss = 0.0
running_IC_loss = 0.0
running_RHS_loss = 0.0
running_data_loss = 0.0
running_L1_loss = 0.0
running_penalty_loss = 0.0
for i_batch, (input_batch, *precomputed_RHS_batch, target_batch) in enumerate(dataloader):
# if we sent all the parts of the dataset to device, we do not need to pass them individually
# zero the gradients
optimiser.zero_grad()
output_batch = pinn(input_batch)
losses = compute_pinn_loss(pinn, input_batch, output_batch, target_batch, lambdas,
scaling_coeffs, IC, precomputed_RHS_batch, device)
loss, loss_ic, loss_rhs, loss_data, L1, target_penalty = losses
################################################################################################################
# compute the total loss
# the backward pass computes the gradient of the loss with respect to the parameters
loss.backward(retain_graph=True)
# make a step in the parameter space
optimiser.step()
# store the losses
running_loss += loss.item()
running_IC_loss += loss_ic.item()
running_RHS_loss += loss_rhs.item()
running_data_loss += loss_data.item()
running_L1_loss += L1.item()
running_penalty_loss += target_penalty.item()
running_losses = [running_IC_loss, running_RHS_loss, running_data_loss, running_L1_loss,
running_penalty_loss]
####################################################################################################################
# store the loss values
for iLoss in range(len(all_cost_names)):
stored_costs[all_cost_names[iLoss]].append(running_losses[iLoss])
loss_seq.append(running_loss)
####################################################################################################################
# occasionally plot the output, save the network state and plot the costs
if i % plotEvery == 0:
# save the model to a pickle file
pt.save({
'epoch': i,
'model_state_dict': pinn.state_dict(),
'optimizer_state_dict': optimiser.state_dict(),
'loss': loss,
'losses': running_losses,
'lambdas': lambdas,
'loss_names': all_cost_names
}, ModelFolderName + '/' + pinnName + '.pth')
# save the costs to a pickle file - this is just for plotting
with open(ModelFolderName + '/' + pinnName + '_training_costs.pkl', 'wb') as f:
pkl.dump(stored_costs, f)
# plotting for different samples - we need to call the correct tenso since we have changed how the input tensors are generated
# in order to plot over the whole interval, we need to produce output
state_domain = pinn(stacked_domain)
# use custom detivarive function to compute the derivatives of outputs, because grad assumed that the output is a scalar
dxdt, rhs_pinn, current_pinn = compute_derivs_and_current(stacked_domain, state_domain,
precomputed_RHS_params, scaling_coeffs, device)
################################################################################################################
# plot network output and errors
fig, axes = plt.subplots(2,nOutputs +1 , figsize=(10, 6),sharex=True, dpi=400)
# genreate 2d ndarray that starts at 0 and ends at 2*nOutputs
axes = axes.ravel()
for iOutput in range(nOutputs):
# axes[iOutput].plot(unique_times, state_true[iOutput,:], label="IVP solution", linewidth=1, color="k", alpha=0.3)
for iSample in range(0, nSamples):
axes[iOutput].plot(unique_times, state_domain[iSample,...,iOutput].cpu().detach().numpy(),
color=colours[iSample],linewidth=0.5,alpha=0.7)
axes[iOutput].set_ylabel('State')
axes[iOutput] = pretty_axis(axes[iOutput], legendFlag=False)
axes[iOutput].set_ylim([-0.5,1.5])
# plot the gradient error
for iOutput in range(nOutputs):
for iSample in range(0, nSamples):
if iSample == 0:
# give a label
axes[nOutputs + iOutput + 1].plot(unique_times, rhs_error_state_weights[iOutput] * (
dxdt[iSample, ..., iOutput].cpu().detach().numpy() - rhs_pinn[
iSample, ..., iOutput].cpu().detach().numpy()),
linewidth=0.5, color=colours[iSample], alpha=0.7,
label=f"Error weight: {rhs_error_state_weights[iOutput]}")
else:
# plot without a label
axes[nOutputs + iOutput + 1].plot(unique_times, rhs_error_state_weights[iOutput] * (
dxdt[iSample, ..., iOutput].cpu().detach().numpy() - rhs_pinn[
iSample, ..., iOutput].cpu().detach().numpy()),
linewidth=0.5, color=colours[iSample], alpha=0.7)
axes[nOutputs+iOutput+1].set_xlabel('Time')
axes[nOutputs+iOutput+1].set_ylabel('Derivative error')
axes[nOutputs+iOutput+1] = pretty_axis(axes[nOutputs+iOutput+1], legendFlag=True)
axes[nOutputs+iOutput+1].set_ylim([-0.2, 0.2])
# plot the current and current error
axes[nOutputs].plot(unique_times, measured_current, label="Measured current", color="k", linewidth=1, alpha=0.3)
# for as many conductances as we put in, plot the current
for iSample in range(0, nSamples):
# plot the current
axes[nOutputs].plot(unique_times, current_pinn[iSample,:].cpu().detach().numpy(), color=colours[iSample],linewidth=0.5,alpha=0.7) #label = "PINN current"
# plot the current error
axes[-1].plot(unique_times, measured_current - current_pinn[iSample,:].cpu().detach().numpy(),
color=colours[iSample], linewidth=0.5, alpha=0.7)
axes[nOutputs].set_ylabel('Current')
axes[nOutputs] = pretty_axis(axes[nOutputs], legendFlag=False)
axes[nOutputs].set_ylim([-4, 5])
# axes[-1].plot(time_of_domain, measured_current - current_pinn.detach().numpy()[0,:], color="k",linewidth=0.5, alpha=0.6)
axes[-1].set_xlabel('Time')
axes[-1].set_ylabel('Current error')
axes[-1] = pretty_axis(axes[-1], legendFlag=False)
axes[-1].set_ylim([-10, 10])
fig.tight_layout(pad=0.3, w_pad=0.4, h_pad=0.2)
if not ArchTestFlag:
cbar = fig.colorbar(cond_heatmap, ax=axes.tolist(), location='top', aspect=50) #ticks=levels
# cbar.ax.set_xticklabels(["{:.2f}".format(j+1) for j in levels])
cbar.ax.set_ylabel('j')
cbar.ax.yaxis.label.set_rotation(90)
# set the suptitle of the figure
fig.suptitle(f"i = {i}")
fig.savefig(FigFolderName + '/'+rhs_name.lower()+'_NN_approximation_iter_' + str(i) + '.png')
################################################################################################################
# plot costs of the iteration
fig_costs, axes = plot_costs(loss_seq, stored_costs, lambdas, all_cost_names)
fig_costs.tight_layout()
fig_costs.savefig(FigFolderName + '/' + rhs_name.lower() + '_costs_iter_' + str(i) + '.png')
plt.close('all')
################################################################################################################
# # we also want to plot the layers as basis functions
# fig, axes = plot_layers_as_bases(pinn, domain, domain_scaled)
# axes[0].set_title(f"i ={i}")
# fig.tight_layout()
# # save the figure
# fig.savefig(figureFolder + '/'+rhs_name.lower()+'_layer_outpusts_iter_' + str(i) + '.png', dpi=400)
# # and parameter values to trace how they are updated
# fig, axes = plot_pinn_params_all_inputs(pinn)
# # set the suptitle
# axes[0].set_ylabel(f"i={i}")
# plt.subplots_adjust(left=0,right=1,wspace=0.1, hspace=1.3)
# save the figure
# fig.savefig(figureFolder + '/'+rhs_name.lower()+'_params_iter_' + str(i) + '.png', dpi=400)
# plt.close('all')
# check the convergence of the loss function
if i > firstIter:
diff_of_cost = np.abs(loss_seq[-1] - loss_seq[-2]) / loss_seq[-1]
print(diff_of_cost)
if diff_of_cost < 1e-6:
print('Cost coverged.')
break
# end of plotting condition
# end of training loop
########################################################################################################################
# save the model to a pickle file
pt.save({
'epoch': i,
'model_state_dict': pinn.state_dict(),
'optimizer_state_dict': optimiser.state_dict(),
'loss': loss,
'losses': running_losses,
'lambdas': lambdas,
'loss_names': all_cost_names
}, ModelFolderName + '/' + pinnName + '.pth')
# save the costs to a pickle file
with open(ModelFolderName + '/' + pinnName + '_training_costs.pkl', 'wb') as f:
pkl.dump(stored_costs, f)
########################################################################################################################
# plot the output of the model on the entire time interval
times_scaled = times * t_scaling_coeff
times_all_domain = pt.tensor(times_scaled, dtype=pt.float32)
stacked_domain = stack_inputs(times_all_domain, param_sample.detach())
# send the domain to device
stacked_domain = stacked_domain.to(device)
# if device name is cuda, flush cache
if device.type == 'cuda':
pt.cuda.empty_cache()
# generate output of the trained PINN and current
with pt.no_grad():
pinn_output = pinn(stacked_domain)
pinn_current = observation_tensors(times, pinn_output, stacked_domain, device)
pinn_current = pinn_current/param_scaling_coeff
pinn_output = pinn_output.cpu().detach().numpy()
pinn_current = pinn_current.cpu().detach().numpy()
########################################################################################################################
# plot outputs at training points
fig, axes = plt.subplots(2+nOutputs, 1, figsize=(10, 7), sharex=True, dpi=400)
axes = axes.ravel()
# plot the solution for all outputs
for iOutput in range(nOutputs):
# axes[iOutput].plot(times, state_true_all[iOutput,:], label='IVP solution', color='k', alpha=0.3)
# this part could be wrong because we may have a multi-dim tensor where only the first dimension matches times
for iSample in range(0, nSamples):
axes[iOutput].plot(times, pinn_output[iSample,:, iOutput], '--', color=colours[iSample], alpha=0.7, linewidth=0.5)
# axes[iOutput+1].plot(times, pinn_output[..., iOutput], '--', label='PINN solution')
# axes[iOutput].set_xlabel('Time')
axes[iOutput].set_ylabel('State')
axes[iOutput] = pretty_axis(axes[iOutput], legendFlag=False)
iAxis = nOutputs
# plot current vs PINN current
# axes[iAxis].plot(times, current_true, label='True current', color='k', alpha=0.3)
for iSample in range(0, nSamples):
axes[iAxis].plot(times, pinn_current[iSample,:], '--',color=colours[iSample], alpha=0.7, linewidth=0.5)
# axes[iAxis].plot(times, pinn_current., '--', label='PINN current')
# axes[iAxis].set_xlabel('Time')
axes[iAxis].set_ylabel('Current')
axes[iAxis] = pretty_axis(axes[iAxis], legendFlag=True)
iAxis = nOutputs+1
# plot the voltage
axes[iAxis].plot(times, V(times), color='k', alpha=0.3)
axes[iAxis].set_xlabel('Time')
axes[iAxis].set_ylabel('Input voltage')
axes[iAxis] = pretty_axis(axes[iAxis], legendFlag=False)
fig.tight_layout(pad=0.3, w_pad=0.4, h_pad=0.2)
if rhs_name.lower() == 'hh_all_inputs_model':
cbar = fig.colorbar(cond_heatmap, ax=axes.tolist(), location='top', aspect=50) #ticks=levels
# cbar.ax.set_xticklabels(["{:.2f}".format(j+1) for j in levels])
cbar.ax.set_ylabel('j')
cbar.ax.yaxis.label.set_rotation(90)
# set the suptitle of the figure
fig.suptitle("Trained PINN output at training points")
plt.savefig(FigFolderName + '/'+rhs_name.lower()+'_trained_nn_output_at_training_values.png')
########################################################################################################################
if model_name.lower() == 'hh':
thetas_true = thetas_hh_baseline
thetas_true_tensor = pt.tensor(thetas_true).unsqueeze(-1) * param_scaling_coeff
stacked_true = stack_inputs(times_all_domain, thetas_true_tensor)
# get the true current
stacked_true = stacked_true.to(device)
pinn_output_at_truth = pinn(stacked_true)
pinn_current_at_truth = observation_tensors(times, pinn_output_at_truth, stacked_true,device)
pinn_current_at_truth = pinn_current_at_truth / param_scaling_coeff
pinn_output_at_truth = pinn_output_at_truth.cpu().detach().numpy()
pinn_current_at_truth = pinn_current_at_truth.cpu().detach().numpy()
# plot the outputs at the true conductance
fig_data, axes = plt.subplots(2+nOutputs, 1, figsize=(10, 7), sharex=True, dpi=400)
axes = axes.ravel()
for iOutput in range(nOutputs):
# axes[iOutput].plot(times, state_true_all[iOutput,:], label='True state',color='k', alpha=0.3)
axes[iOutput].plot(times, pinn_output_at_truth[0,..., iOutput], '--', label='PINN solution')
axes[iOutput].set_ylabel('State')
axes[iOutput] = pretty_axis(axes[iOutput], legendFlag=True)
iAxis = nOutputs
# plot current vs PINN current
# axes[iAxis].plot(times, current_true, label='True current',color='k', alpha=0.3)
axes[iAxis].plot(times, pinn_current_at_truth[0,:], '--', label='PINN current')
axes[iAxis].set_ylabel('Current')
axes[iAxis] = pretty_axis(axes[iAxis], legendFlag=True)
iAxis = nOutputs+1
# plot the voltage
axes[iAxis].plot(times, V(times),color='k', alpha=0.3)
axes[iAxis].set_xlabel('Time')
axes[iAxis].set_ylabel('Input voltage')
axes[iAxis] = pretty_axis(axes[iAxis], legendFlag=False)
plt.tight_layout()
plt.savefig(FigFolderName + '/'+rhs_name.lower()+'_trained_nn_output_at_truth.png')
########################################################################################################################
fig, axes = plot_costs(loss_seq, stored_costs, lambdas, all_cost_names)
fig.tight_layout()
fig.savefig(FigFolderName + '/' + rhs_name.lower() + '_costs.png')