forked from achgls/music-genre-demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01_Music_Genre_Classification.py
239 lines (192 loc) · 8.64 KB
/
01_Music_Genre_Classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import joblib
import matplotlib.pyplot as plt
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import seaborn as sns
import streamlit as st
import torch
from pytube.exceptions import RegexMatchError
from torchaudio import load
from torchaudio.transforms import Resample
from src import utils
st.set_page_config(
page_title="NAML - Music Genre Classifcation 🎼",
page_icon="🎼"
)
st.set_option('deprecation.showPyplotGlobalUse', False)
plt.set_cmap("Greys") # Set cmap for spectrogram
color_palette = sns.color_palette("Set3", n_colors=10)
genre_dict = {
0: "Blues",
1: "Classical",
2: "Country",
3: "Disco",
4: "Hiphop",
5: "Jazz",
6: "Metal",
7: "Pop",
8: "Reggae",
9: "Rock"
}
SAMPLE_RATE = 22_050
MODEL_DIR = "models/SENet-GAP-w-Data-Aug"
# --- Load the necessary components to represent the model's latent space ---
training_embeddings = st.cache_data(joblib.load)(os.path.join(MODEL_DIR, "training_embeddings.pkl"))
pca = st.cache_data(joblib.load)(os.path.join(MODEL_DIR, "PCA.pkl"))
scaler = st.cache_data(joblib.load)(os.path.join(MODEL_DIR, "StdScaler.pkl"))
trues = st.cache_data(joblib.load)(os.path.join(MODEL_DIR, "training_labels.pkl"))
with st.sidebar:
st.session_state["max_duration"] = st.number_input("Max duration in seconds", value=60, step=10, max_value=600)
st.info("Maximum duration (in seconds) that the model will process.")
st.session_state["slice_duration"] = st.number_input("Duration of slices", value=2.0, step=0.5, max_value=10.0)
st.info("Duration of each individual slice extracted from the audio.")
st.session_state["overlap"] = st.slider("Overlap", value=0.5, step=0.05, max_value=1.0)
st.info("The fraction of overlap between each contigous slice.")
# --- PAGE START ---
st.image("images/logo_polimi.png")
st.divider()
# ------------------
st.subheader("NAML 2022: Practical project")
st.title("Automatic music genre classification with Deep Learning")
# ------------------
st.divider()
st.markdown("")
left, right = st.columns((1, 3))
with left:
st.markdown("#### Upload a song extract for our model to classify")
wav = None
thumbnail_url = None
with right:
audio_file = st.file_uploader("uploader", label_visibility="collapsed")
url = st.text_input("Or paste a YouTube URL:")
if audio_file:
# Load a file using torchaudio backend
# will only support specific file formats
try:
song_name = audio_file.name
wav, sr = load(audio_file)
wav = Resample(orig_freq=sr, new_freq=SAMPLE_RATE)(wav)
print("wav_mean:", torch.mean(wav))
except RuntimeError:
st.error("There was an issue loading the file. The file format might not be supported by torchaudio"
"backend. Please refer to"
"[torchaudio backend documentation](https://pytorch.org/audio/stable/backend.html).")
elif url:
try:
audio_io, song_name = utils.get_audio_stream_from_youtube(url)
wav, sr = load(audio_io)
except RegexMatchError:
st.error("Could not resolve the specified URL.")
except Exception as err:
st.error(f"**ERROR**: Encountered `{err.__class__.__name__}`")
raise err.with_traceback(err.__traceback__)
# ------ IF AUDIO -------
if wav is not None:
st.divider()
st.markdown("")
st.write('Song name:', song_name)
# --- Load pre-trained model and its associated transform (power-spectrogram) ---
model, transform = utils.load_model_and_transform(MODEL_DIR, checkpoint="accuracy", model_type="CNN")
model.eval() # Set the model to inference mode
wav = wav[:1, :] # Make audio mono by dropping all subsequent channels
# --- Show audio component for playback ----
st.audio(wav.numpy(), sample_rate=SAMPLE_RATE)
# --- Show a random ~10-sec section of the associated spectrogram ---
spec = transform(wav).squeeze().numpy()
offset = 0 if spec.shape[-1] <= 1200 else np.random.randint(spec.shape[-1] - 1200)
spec = np.log1p(spec)[400::-1, offset:offset+1200]
fig, ax = plt.subplots(figsize=(10, 3))
plt.axis(False)
ax.imshow(spec)
st.pyplot(fig)
# ------------------
st.divider()
left, right = st.columns(2)
left.header("Inference")
# --- Slice up the audio into 4.0 sec extracts ---
slices = utils.slice_audio(
wav=wav,
slice_duration=st.session_state["slice_duration"],
overlap=st.session_state["overlap"],
sample_rate=SAMPLE_RATE,
max_duration=st.session_state["max_duration"]
)
print("NUM SLICES:", len(slices))
# --- Show the color palette associated with the genres ---
palplot = sns.palplot(color_palette)
plt.axis(False)
for k, genre in enumerate(genre_dict):
plt.text(k, 0.05, genre_dict[k],
horizontalalignment="center",
fontdict={
"family": "sans-serif",
"weight": "semibold",
"size": 10,
})
st.pyplot(palplot)
# -----INFERENCE-----
figure = st.empty() # Empty component for the predictions stacked chart
container = st.container() # Container for the feature-space figure and top-5 genres
metrics_column, feature_column = container.columns((1, 4)) # Split container in 2 parts
feature_figure = feature_column.empty() # Initialize empty component for feature space figure
metrics = [metrics_column.empty() for i in range(5)] # Initialize empty components for top-5 genre probabilities
# --- Make the figure representing the training set feature space representation ---
proj = pca.transform(scaler.transform(training_embeddings))
trues = [genre_dict[int(k)] for k in trues]
training_feat_space = px.scatter_3d(
x=proj[:, 0], y=proj[:, 1], z=proj[:, 2],
color=trues,
color_discrete_map={
k: v for k, v in zip(genre_dict.values(), px.colors.qualitative.Set3)
} # Make the genres properly match the colors used above
)
training_feat_space.update_traces(marker_size=5)
feature_figure.plotly_chart(training_feat_space, use_container_width=True)
# --- Initialize figure for predictions stackplot ---
fig, ax = plt.subplots(figsize=(10, 3))
ax.set_prop_cycle('color', color_palette)
fig.tight_layout()
plt.axis(False)
ax.set_xlim(0, len(slices)-1)
# --- Initialize registration of feature vector at forward pass ---
activation = {}
model.pool.register_forward_hook(utils.get_activation("embedding", activation))
total_probas = torch.Tensor()
total_feats = torch.Tensor()
with torch.no_grad():
for i, x in enumerate(slices):
x = x.unsqueeze(0) # Add dummy batch dimension
x = transform(x) # Compute spectrogram
probas = model(x) # Compute model's forward pass
# Amplify the probas without resorting to softmax in order
# not to output overly confident predictions
probas -= torch.min(probas)
probas **= 10
probas /= torch.sum(probas)
# probas = torch.nn.functional.softmax(probas, dim=1)
feats = activation["embedding"]
total_feats = torch.concatenate((total_feats, feats), dim=0)
total_probas = torch.concatenate((total_probas, probas), dim=0)
mean_probas = torch.mean(total_probas, dim=0).numpy() * 100
top_classes = np.argsort(mean_probas)[::-1]
# --- Update the stackplot of genre probabilities ---
ax.stackplot(torch.arange(i+1), *torch.vsplit(total_probas.T, 10))
figure.pyplot(fig)
# --- Update top-5 genres probabilities metrics ---
for k, m in enumerate(metrics):
m.metric(f"{genre_dict[top_classes[k]]}", f"{mean_probas[top_classes[k]]:5>.2f} %")
# --- Project the feature vector into the 3D PCA representation ---
pca_proj_feats = pca.transform(scaler.transform(total_feats.squeeze()))
centroid = np.mean(pca_proj_feats, axis=0)
sample_feat_space = px.line_3d(
x=pca_proj_feats[:, 0], y=pca_proj_feats[:, 1], z=pca_proj_feats[:, 2],
markers=True,
)
centroid = px.scatter_3d(
x=[centroid[0]], y=[centroid[1]], z=[centroid[2]])
centroid.update_traces(marker_size=15, marker_line_width=3, marker_line_color="red", marker_color="black")
sample_feat_space.update_traces(line_color='#000000', line_width=3, marker_size=7)
feature_space = go.Figure(data=training_feat_space.data + sample_feat_space.data + centroid.data)
feature_figure.plotly_chart(feature_space, use_container_width=True)