forked from nmoehrle/libacc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bvh_tree.h
491 lines (423 loc) · 15.6 KB
/
bvh_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*
* Copyright (C) 2015, Nils Moehrle
* All rights reserved.
*
* This software may be modified and distributed under the terms
* of the BSD 3-Clause license. See the LICENSE.txt file for details.
*/
#ifndef ACC_BVHTREE_HEADER
#define ACC_BVHTREE_HEADER
#include <array>
#include <deque>
#include <stack>
#include <cassert>
#include <algorithm>
#include <atomic>
#include <thread>
#include <limits>
#include "primitives.h"
ACC_NAMESPACE_BEGIN
template <typename IdxType, typename Vec3fType>
class BVHTree {
public:
typedef std::shared_ptr<BVHTree<IdxType, Vec3fType> > Ptr;
typedef std::shared_ptr<const BVHTree<IdxType, Vec3fType> > ConstPtr;
typedef acc::Ray<Vec3fType> Ray;
struct Hit {
/* Parameter of the ray (distance of hit location). */
float t;
/* Index of the struck triangle. */
IdxType idx;
/* Barycentric coordinates of hit location w.r.t. the triangle. */
Vec3fType bcoords;
};
private:
static constexpr IdxType NAI = std::numeric_limits<IdxType>::max();
typedef acc::AABB<Vec3fType> AABB;
typedef acc::Tri<Vec3fType> Tri;
struct Node {
typedef IdxType ID;
IdxType first;
IdxType last;
ID left;
ID right;
AABB aabb;
};
struct Bin {
IdxType n;
AABB aabb;
};
std::vector<IdxType> indices;
std::vector<Tri> tris;
std::atomic<IdxType> num_nodes;
std::vector<Node> nodes;
typename Node::ID create_node(IdxType first, IdxType last) {
typename Node::ID node_id = num_nodes++;
Node & node = nodes[node_id];
node.first = first;
node.last = last;
node.left = NAI;
node.right = NAI;
node.aabb.min = Vec3fType(inf);
node.aabb.max = Vec3fType(-inf);
return node_id;
}
std::pair<typename Node::ID, typename Node::ID> sbsplit(typename Node::ID node_id,
std::vector<AABB> const & aabbs);
std::pair<typename Node::ID, typename Node::ID> bsplit(typename Node::ID node_id,
std::vector<AABB> const & aabbs);
std::pair<typename Node::ID, typename Node::ID> ssplit(typename Node::ID node_id,
std::vector<AABB> const & aabbs);
void split(typename Node::ID, std::vector<AABB> const & aabbs,
std::atomic<int> * num_threads);
bool intersect(Ray const & ray, typename Node::ID node_id, Hit * hit) const;
Vec3fType closest_point(Vec3fType vertex, typename Node::ID node_id) const;
public:
static
Ptr create(std::vector<IdxType> const & faces,
std::vector<Vec3fType> const & vertices,
int max_threads = std::thread::hardware_concurrency()) {
return Ptr(new BVHTree(faces, vertices, max_threads));
}
template <class C>
static C convert(BVHTree const & bvh_tree);
/* Constructs the BVH tree using the Surface Area Heuristic as
* published in
* "On fast Construction of SAH-based Bounding Volume Hierarchies"
* by Ingo Wald (IEEE Symposium on Interactive Ray Tracing 2007)
*
* The mesh should be given as triangle index list and
* a vector containing the 3D positions. */
BVHTree(std::vector<IdxType> const & faces,
std::vector<Vec3fType> const & vertices,
int max_threads = std::thread::hardware_concurrency());
bool intersect(Ray ray, Hit * hit_ptr = nullptr) const;
Vec3fType closest_point(Vec3fType vertex, float max_dist = inf) const;
};
#define NUM_BINS 64
template <typename IdxType, typename Vec3fType>
void BVHTree<IdxType, Vec3fType>::split(typename Node::ID node,
std::vector<AABB> const & aabbs,
std::atomic<int> * num_threads) {
typename Node::ID left, right;
if ((*num_threads -= 1) >= 1) {
std::tie(left, right) = sbsplit(node, aabbs);
if (left != NAI && right != NAI) {
//std::thread other(&BVHTree::split, this, left, std::cref(aabbs), num_threads);
std::thread other(&BVHTree::split, this, left, aabbs, num_threads);
split(right, aabbs, num_threads);
other.join();
}
} else {
std::deque<typename Node::ID> queue;
queue.push_back(node);
while (!queue.empty()) {
typename Node::ID node = queue.back(); queue.pop_back();
std::tie(left, right) = sbsplit(node, aabbs);
if (left != NAI && right != NAI) {
queue.push_back(left);
queue.push_back(right);
}
}
}
*num_threads += 1;
}
template <typename IdxType, typename Vec3fType>
std::pair<typename BVHTree<IdxType, Vec3fType>::Node::ID, typename BVHTree<IdxType, Vec3fType>::Node::ID>
BVHTree<IdxType, Vec3fType>::sbsplit(typename Node::ID node_id,
std::vector<AABB> const & aabbs) {
Node const & node = nodes[node_id];
IdxType n = node.last - node.first;
if (n > NUM_BINS) {
return bsplit(node_id, aabbs);
} else {
return ssplit(node_id, aabbs);
}
}
template <typename IdxType, typename Vec3fType>
std::pair<typename BVHTree<IdxType, Vec3fType>::Node::ID, typename BVHTree<IdxType, Vec3fType>::Node::ID>
BVHTree<IdxType, Vec3fType>::bsplit(typename Node::ID node_id,
std::vector<AABB> const & aabbs) {
Node & node = nodes[node_id];
IdxType n = node.last - node.first;
std::array<Bin, NUM_BINS> bins;
std::array<AABB, NUM_BINS> right_aabbs;
std::vector<IdxType> bin(n);
float min_cost = inf;
std::pair<IdxType, char> split;
for (char d = 0; d < 3; ++d) {
float min = node.aabb.min[d];
float max = node.aabb.max[d];
for (Bin & bin : bins) {
bin = {0, {Vec3fType(inf), Vec3fType(-inf)}};
}
for (std::size_t i = node.first; i < node.last; ++i) {
AABB const & aabb = aabbs[indices[i]];
char idx = ((mid(aabb, d) - min) / (max - min)) * (NUM_BINS - 1);
bins[idx].aabb += aabb;
bins[idx].n += 1;
bin[i - node.first] = idx;
}
right_aabbs[NUM_BINS - 1] = bins[NUM_BINS - 1].aabb;
for (std::size_t i = NUM_BINS - 1; i > 0; --i) {
right_aabbs[i - 1] = bins[i - 1].aabb + right_aabbs[i];
}
AABB left_aabb = bins[0].aabb;
std::size_t nl = bins[0].n;
for (std::size_t idx = 1; idx < NUM_BINS; ++idx) {
std::size_t nr = n - nl;
float cost = (surface_area(left_aabb) / surface_area(node.aabb) * nl
+ surface_area(right_aabbs[idx]) / surface_area(node.aabb) * nr);
if (cost <= min_cost) {
min_cost = cost;
split = std::make_pair(d, idx);
}
nl += bins[idx].n;
left_aabb += bins[idx].aabb;
}
}
if (min_cost >= n) return std::make_pair(NAI, NAI);
char d;
IdxType sidx;
std::tie(d, sidx) = split;
float min = node.aabb.min[d];
float max = node.aabb.max[d];
for (Bin & bin : bins) {
bin = {0, {Vec3fType(inf), Vec3fType(-inf)}};
}
for (std::size_t i = node.first; i < node.last; ++i) {
AABB const & aabb = aabbs[indices[i]];
char idx = ((mid(aabb, d) - min) / (max - min)) * (NUM_BINS - 1);
bins[idx].aabb += aabb;
bins[idx].n += 1;
bin[i - node.first] = idx;
}
IdxType l = node.first;
IdxType r = node.last - 1;
while (l < r) {
if (bin[l - node.first] < sidx) {
l += 1;
continue;
}
if (bin[r - node.first] >= sidx) {
r -= 1;
continue;
}
std::swap(bin[l - node.first], bin[r - node.first]);
std::swap(indices[l], indices[r]);
}
assert(l == r);
std::size_t m = bin[(l&r) - node.first] >= sidx ? (l&r) : (l&r) + 1;
node.left = create_node(node.first, m);
node.right = create_node(m, node.last);
for (std::size_t idx = 0; idx < NUM_BINS; ++idx) {
if (idx < sidx) {
nodes[node.left].aabb += bins[idx].aabb;
} else {
nodes[node.right].aabb += bins[idx].aabb;
}
}
return std::make_pair(node.left, node.right);
}
template <typename IdxType, typename Vec3fType>
std::pair<typename BVHTree<IdxType, Vec3fType>::Node::ID, typename BVHTree<IdxType, Vec3fType>::Node::ID>
BVHTree<IdxType, Vec3fType>::ssplit(typename Node::ID node_id, std::vector<AABB> const & aabbs) {
Node & node = nodes[node_id];
IdxType n = node.last - node.first;
float min_cost = inf;
std::pair<char, IdxType> split;
std::vector<AABB> right_aabbs(n);
for (char d = 0; d < 3; ++d) {
std::sort(indices.begin() + node.first, indices.begin() + node.last,
[&aabbs, d] (IdxType first, IdxType second) -> bool {
return mid(aabbs[first], d) < mid(aabbs[second], d)
|| (mid(aabbs[first], d) == mid(aabbs[second], d)
&& first < second);
}
);
right_aabbs[n - 1] = aabbs[indices[node.last - 1]];
for (IdxType i = node.last - 1; i > node.first; --i) {
right_aabbs[i - 1 - node.first] = aabbs[indices[i - 1]]
+ right_aabbs[i - node.first];
}
node.aabb = right_aabbs[0];
AABB left_aabb = aabbs[indices[node.first]];
for (IdxType i = node.first + 1; i < node.last; ++i) {
IdxType nl = i - node.first;
IdxType nr = n - nl;
float cost = (surface_area(left_aabb) / surface_area(node.aabb) * nl
+ surface_area(right_aabbs[nl]) / surface_area(node.aabb) * nr);
if (cost <= min_cost) {
min_cost = cost;
split = std::make_pair(d, i);
}
left_aabb += aabbs[indices[i]];
}
}
if (min_cost >= n) return std::make_pair(NAI, NAI);
char d;
IdxType i;
std::tie(d, i) = split;
std::sort(indices.begin() + node.first, indices.begin() + node.last,
[&aabbs, d] (std::size_t first, std::size_t second) -> bool {
return mid(aabbs[first], d) < mid(aabbs[second], d)
|| (mid(aabbs[first], d) == mid(aabbs[second], d)
&& first < second);
}
);
node.left = create_node(node.first, i);
node.right = create_node(i, node.last);
return std::make_pair(node.left, node.right);
}
template <typename IdxType, typename Vec3fType>
BVHTree<IdxType, Vec3fType>::BVHTree(std::vector<IdxType> const & faces,
std::vector<Vec3fType> const & vertices, int max_threads) : num_nodes(0) {
std::size_t num_faces = faces.size() / 3;
std::vector<AABB> aabbs(num_faces);
std::vector<Tri> ttris(num_faces);
/* Initialize vector with upper bound of nodes. */
nodes.resize(2 * num_faces - 1);
/* Initialize root node. */
Node & root = nodes[create_node(0, num_faces)];
for (std::size_t i = 0; i < aabbs.size(); ++i) {
ttris[i].a = vertices[faces[i * 3 + 0]];
ttris[i].b = vertices[faces[i * 3 + 1]];
ttris[i].c = vertices[faces[i * 3 + 2]];
calculate_aabb(ttris[i], &aabbs[i]);
root.aabb += aabbs[i];
}
indices.resize(aabbs.size());
for (std::size_t i = 0; i < indices.size(); ++i) {
indices[i] = i;
}
std::atomic<int> num_threads(max_threads);
split(0, aabbs, &num_threads);
tris.resize(ttris.size());
for (std::size_t i = 0; i < indices.size(); ++i) {
tris[i] = ttris[indices[i]];
}
nodes.resize(num_nodes);
}
template <typename IdxType, typename Vec3fType> bool
BVHTree<IdxType, Vec3fType>::intersect(Ray const & ray, typename Node::ID node_id, Hit * hit) const {
Node const & node = nodes[node_id];
bool ret = false;
for (std::size_t i = node.first; i < node.last; ++i) {
float t;
Vec3fType bcoords;
if (acc::intersect(ray, tris[i], &t, &bcoords)) {
if (t > hit->t) continue;
hit->idx = indices[i];
hit->t = t;
hit->bcoords = bcoords;
ret = true;
}
}
return ret;
}
template <typename IdxType, typename Vec3fType> bool
BVHTree<IdxType, Vec3fType>::intersect(Ray ray, Hit * hit_ptr) const {
Hit hit;
hit.t = inf;
typename Node::ID node_id = 0;
std::stack<typename Node::ID> s;
while (true) {
Node const & node = nodes[node_id];
if (node.left != NAI && node.right != NAI) {
float tmin_left, tmin_right;
bool left = acc::intersect(ray, nodes[node.left].aabb, &tmin_left);
bool right = acc::intersect(ray, nodes[node.right].aabb, &tmin_right);
if (left && right) {
if (tmin_left < tmin_right) {
s.push(node.right);
node_id = node.left;
} else {
s.push(node.left);
node_id = node.right;
}
} else {
if (right) node_id = node.right;
if (left) node_id = node.left;
}
if (!left && !right) {
if (s.empty()) break;
node_id = s.top(); s.pop();
}
} else {
if (intersect(ray, node_id, &hit)) {
ray.tmax = hit.t;
}
if (s.empty()) break;
node_id = s.top(); s.pop();
}
}
if (hit.t < inf) {
if (hit_ptr != nullptr) {
*hit_ptr = hit;
}
return true;
} else {
return false;
}
}
template <typename IdxType, typename Vec3fType> Vec3fType
BVHTree<IdxType, Vec3fType>::closest_point(Vec3fType vertex, typename Node::ID node_id) const {
Node const & node = nodes[node_id];
Vec3fType closest;
float dist = inf;
for (std::size_t i = node.first; i < node.last; ++i) {
Vec3fType closest_tri = acc::closest_point(vertex, tris[i]);
float dist_tri = (closest_tri - vertex).square_norm();
if (dist_tri < dist) {
closest = closest_tri;
dist = dist_tri;
}
}
return closest;
}
template <typename IdxType, typename Vec3fType> Vec3fType
BVHTree<IdxType, Vec3fType>::closest_point(Vec3fType vertex, float max_dist) const {
float dist = max_dist * max_dist;
Vec3fType closest;
typename Node::ID node_id = 0;
std::stack<typename Node::ID> s;
while (true) {
Node const & node = nodes[node_id];
if (node.left != NAI && node.right != NAI) {
Vec3fType closest_left = acc::closest_point(vertex, nodes[node.left].aabb);
Vec3fType closest_right = acc::closest_point(vertex, nodes[node.right].aabb);
float dmin_left = (closest_left - vertex).square_norm();
float dmin_right = (closest_right - vertex).square_norm();
bool left = dmin_left < dist;
bool right = dmin_right < dist;
if (left && right) {
if (dmin_left < dmin_right) {
s.push(node.right);
node_id = node.left;
} else {
s.push(node.left);
node_id = node.right;
}
} else {
if (right) node_id = node.right;
if (left) node_id = node.left;
}
if (!left && !right) {
if (s.empty()) break;
node_id = s.top(); s.pop();
}
} else {
Vec3fType closest_leaf = closest_point(vertex, node_id);
float dist_leaf = (closest_leaf - vertex).square_norm();
if (dist_leaf < dist) {
dist = dist_leaf;
closest = closest_leaf;
}
if (s.empty()) break;
node_id = s.top(); s.pop();
}
}
return closest;
}
ACC_NAMESPACE_END
#endif /* ACC_BVHTREE_HEADER */