forked from nmoehrle/libacc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kd_tree.h
201 lines (171 loc) · 6.15 KB
/
kd_tree.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
/*
* Copyright (C) 2015, Nils Moehrle
* All rights reserved.
*
* This software may be modified and distributed under the terms
* of the BSD 3-Clause license. See the LICENSE.txt file for details.
*/
#ifndef ACC_KDTREE_HEADER
#define ACC_KDTREE_HEADER
#include <queue>
#include <stack>
#include <limits>
#include <atomic>
#include <thread>
#include <algorithm>
#include <math/vector.h>
#include "defines.h"
ACC_NAMESPACE_BEGIN
template <uint16_t K, typename IdxType = unsigned>
class KDTree {
public:
#define NAI std::numeric_limits<IdxType>::max()
private:
std::vector<math::Vector<float, K> > const & vertices;
struct Node {
typedef IdxType ID;
decltype(K) d;
IdxType first;
IdxType last;
IdxType vertex_id;
Node::ID left;
Node::ID right;
};
std::atomic<IdxType> num_nodes;
std::vector<Node> nodes;
typename Node::ID create_node(decltype(K) d, IdxType first, IdxType last) {
typename Node::ID node_id = num_nodes++;
Node & node = nodes[node_id];
node.first = first;
node.last = last;
node.left = NAI;
node.right = NAI;
node.vertex_id = NAI;
node.d = d;
return node_id;
}
std::pair<typename Node::ID, typename Node::ID>
ssplit(typename Node::ID node_id, std::vector<IdxType> * indices);
void split(typename Node::ID node_id, std::vector<IdxType> * indices,
std::atomic<int> * num_threads);
public:
KDTree(std::vector<math::Vector<float, K> > const & vertices,
int max_threads = std::thread::hardware_concurrency());
std::pair<IdxType, float>
find_nn(math::Vector<float, K> point,
float max_dist = std::numeric_limits<float>::infinity()) const;
std::vector<std::pair<IdxType, float> >
find_nns(math::Vector<float, K> point, std::size_t n,
float max_dist = std::numeric_limits<float>::infinity()) const;
};
template <uint16_t K, typename IdxType>
KDTree<K, IdxType>::KDTree(std::vector<math::Vector<float, K> > const & vertices,
int max_threads)
: vertices(vertices), num_nodes(0) {
std::size_t num_vertices = vertices.size();
nodes.resize(num_vertices);
std::vector<IdxType> indices(num_vertices);
for (std::size_t i = 0; i < indices.size(); ++i) {
indices[i] = i;
}
std::atomic<int> num_threads(max_threads);
split(create_node(0, 0, num_vertices), &indices, &num_threads);
}
template <uint16_t K, typename IdxType>
void KDTree<K, IdxType>::split(typename Node::ID node_id, std::vector<IdxType> * indices, std::atomic<int> * num_threads) {
typename Node::ID left, right;
if ((*num_threads -= 1) >= 1) {
std::tie(left, right) = ssplit(node_id, indices);
if (left != NAI && right != NAI) {
std::thread other(&KDTree::split, this, left, indices, num_threads);
split(right, indices, num_threads);
other.join();
} else {
if (left != NAI) split(left, indices, num_threads);
if (right != NAI) split(right, indices, num_threads);
}
} else {
std::deque<typename Node::ID> queue;
queue.push_back(node_id);
while (!queue.empty()) {
typename Node::ID node_id = queue.front(); queue.pop_front();
std::tie(left, right) = ssplit(node_id, indices);
if (left != NAI) queue.push_back(left);
if (right != NAI) queue.push_back(right);
}
}
*num_threads += 1;
}
template <uint16_t K, typename IdxType>
std::pair<typename KDTree<K, IdxType>::Node::ID, typename KDTree<K, IdxType>::Node::ID>
KDTree<K, IdxType>::ssplit(typename Node::ID node_id, std::vector<IdxType> * indices) {
Node & node = nodes[node_id];
decltype(K) d = node.d;
std::sort(indices->data() + node.first, indices->data() + node.last,
[this, d] (IdxType a, IdxType b) -> bool {
return vertices[a][d] < vertices[b][d];
}
);
d = (d + 1) % K;
IdxType mid = (node.last + node.first) / 2;
node.vertex_id = indices->at(mid);
if (mid - node.first > 0) {
node.left = create_node(d, node.first, mid);
}
if (node.last - (mid + 1) > 0) {
node.right = create_node(d, mid + 1, node.last);
}
return std::make_pair(node.left, node.right);
}
template <uint16_t K, typename IdxType>
std::pair<IdxType, float>
KDTree<K, IdxType>::find_nn(math::Vector<float, K> point, float max_dist) const {
return find_nns(point, 1, max_dist)[0];
}
template <uint16_t K, typename IdxType>
std::vector<std::pair<IdxType, float> >
KDTree<K, IdxType>::find_nns(math::Vector<float, K> vertex, std::size_t n, float max_dist) const {
std::pair<IdxType, float> nn = std::make_pair(NAI, max_dist);
std::vector<std::pair<IdxType, float> > nns(n, nn);
std::stack<std::pair<typename Node::ID, bool> > s;
s.emplace(0, true);
while (!s.empty()) {
typename Node::ID node_id;
bool down;
std::tie(node_id, down) = s.top();
s.pop();
if (node_id == NAI) continue;
Node const & node = nodes[node_id];
float diff = vertex[node.d] - vertices[node.vertex_id][node.d];
if (down) {
float dist = (vertex - vertices[node.vertex_id]).norm();
if (dist < max_dist) {
nns.emplace_back(node.vertex_id, dist);
std::sort(nns.begin(), nns.end(),
[] (std::pair<IdxType, float> a, std::pair<IdxType, float> b) -> bool {
return a.second < b.second;
}
);
nns.pop_back();
max_dist = nns.back().second;
}
if (node.left == NAI && node.right == NAI) continue;
s.emplace(node_id, false);
if (diff < 0.0f) {
s.emplace(node.left, true);
} else {
s.emplace(node.right, true);
}
} else {
if (std::abs(diff) >= max_dist) continue;
if (diff < 0.0f) {
s.emplace(node.right, true);
} else {
s.emplace(node.left, true);
}
}
}
return nns;
}
ACC_NAMESPACE_END
#endif /* ACC_KDTREE_HEADER */