Skip to content

Latest commit

 

History

History
655 lines (564 loc) · 24.7 KB

README.md

File metadata and controls

655 lines (564 loc) · 24.7 KB

{costoffice}

The costoffice package contains functions enabling the user to access the latest Physician Office Visit Costs datasets from Data.CMS.gov.

There are 83 datasets in total, each representing a different medical specialty.

Broken down by ZIP code, they contain the:

  • Most Utilized HCPCS Level II Procedure Code (for both New and Established patients)
  • Price Medicare Paid for the Visit (Min-Mode-Max)
  • Copay the Patient Paid for the Visit (Min-Mode-Max)

R-CMD-check Lifecycle: experimental Project Status: WIP - Initial development is in progress, but there has not yet been a stable, usable release suitable for the public. Code Size Last Commit CodeFactor Codecov test coverage

Installation

You can install the development version of costoffice from GitHub with:

# install.packages("devtools")
devtools::install_github("andrewallenbruce/costoffice", build_vignettes = TRUE)
# install.packages("remotes")
remotes::install_github("andrewallenbruce/costoffice", build_vignettes = TRUE)
library(costoffice)

search_datasets()

Returns a data frame of each dataset’s medical specialty, date of most recent release, and a download link for it’s corresponding csv file:

# Call with no arguments to return the entire data frame
search_datasets()
#> # A tibble: 83 × 3
#>    specialty                                        released   csv_url          
#>    <chr>                                            <date>     <chr>            
#>  1 addiction_medicine                               2022-07-14 https://data.cms…
#>  2 advanced_heart_failure_and_transplant_cardiology 2022-07-14 https://data.cms…
#>  3 allergy_immunology                               2022-07-14 https://data.cms…
#>  4 anesthesiology                                   2022-07-14 https://data.cms…
#>  5 cardiac_surgery                                  2022-07-14 https://data.cms…
#>  6 cardiology                                       2022-07-14 https://data.cms…
#>  7 certified_clinical_nurse_specialist              2022-07-14 https://data.cms…
#>  8 certified_nurse_midwife                          2022-07-14 https://data.cms…
#>  9 certified_registered_nurse_anesthetist_crna      2022-07-14 https://data.cms…
#> 10 clinic_or_group_practice                         2022-07-14 https://data.cms…
#> # ℹ 73 more rows

If needed, there are two arguments to this function. Use the specialty argument to return only exact matches (note the underscore in the names):

search_datasets(specialty = "emergency_medicine")
#> # A tibble: 1 × 3
#>   specialty          released   csv_url                                         
#>   <chr>              <date>     <chr>                                           
#> 1 emergency_medicine 2022-07-14 https://data.cms.gov/provider-data/sites/defaul…

Use the keyword argument to return partial matches:

search_datasets(keyword = "medicine")
#> # A tibble: 12 × 3
#>    specialty                            released   csv_url                      
#>    <chr>                                <date>     <chr>                        
#>  1 addiction_medicine                   2022-07-14 https://data.cms.gov/provide…
#>  2 emergency_medicine                   2022-07-14 https://data.cms.gov/provide…
#>  3 geriatric_medicine                   2022-07-14 https://data.cms.gov/provide…
#>  4 internal_medicine                    2022-07-14 https://data.cms.gov/provide…
#>  5 nuclear_medicine                     2022-07-14 https://data.cms.gov/provide…
#>  6 osteopathic_manipulative_medicine    2022-07-14 https://data.cms.gov/provide…
#>  7 pediatric_medicine                   2022-07-14 https://data.cms.gov/provide…
#>  8 physical_medicine_and_rehabilitation 2022-07-14 https://data.cms.gov/provide…
#>  9 preventive_medicine                  2022-07-14 https://data.cms.gov/provide…
#> 10 sleep_medicine                       2022-07-14 https://data.cms.gov/provide…
#> 11 sports_medicine                      2022-07-14 https://data.cms.gov/provide…
#> 12 undersea_and_hyperbaric_medicine     2022-07-14 https://data.cms.gov/provide…

Return a vector of the exact names of the medical specialties by simply calling search_datasets()$specialty:


Available Medical Specialties
addiction_medicine
advanced_heart_failure_and_transplant_cardiology
allergy_immunology
anesthesiology
cardiac_surgery
cardiology
certified_clinical_nurse_specialist
certified_nurse_midwife
certified_registered_nurse_anesthetist_crna
clinic_or_group_practice
clinical_cardiac_electrophysiology
clinical_laboratory
colorectal_surgery_proctology
critical_care_intensivists
dentist
dermatology
diagnostic_radiology
emergency_medicine
endocrinology
family_practice
gastroenterology
general_practice
general_surgery
geriatric_medicine
geriatric_psychiatry
gynecological_oncology
hand_surgery
hematology
hematology_oncology
hematopoietic_cell_transplantation_and_cellular_therapy
hospice_and_palliative_care
hospitalist
infectious_disease
internal_medicine
interventional_cardiology
interventional_pain_management
interventional_radiology
licensed_clinical_social_worker
mammography_center
maxillofacial_surgery
medical_genetics_and_genomics
medical_oncology
medical_toxicology
nephrology
neurology
neuropsychiatry
neurosurgery
nuclear_medicine
nurse_practitioner
obstetrics_gynecology
ophthalmology
optometry
oral_surgery_dentist_only
orthopedic_surgery
osteopathic_manipulative_medicine
otolaryngology
pain_management
pathology
pediatric_medicine
peripheral_vascular_disease
physical_medicine_and_rehabilitation
physical_therapist_in_private_practice
physician_assistant
plastic_and_reconstructive_surgery
podiatry
preventive_medicine
psychiatry
psychologist_clinical
public_health_or_welfare_agency
pulmonary_disease
radiation_oncology
registered_dietitian_or_nutrition_professional
rheumatology
sleep_medicine
speech_language_pathologist
sports_medicine
surgical_oncology
thoracic_surgery
undefined_physician_type
undersea_and_hyperbaric_medicine
unknown_supplierprovider_specialty
urology
vascular_surgery

Example: Overview

dir <- "E:/costoffice_data/costoffice_2022_raw_data/"
paths <- list.files(dir, pattern = "[.]csv$", full.names = TRUE)
names <- basename(paths)
out <- gsub(".csv", ".rds", names)
outdir <- "E:/costoffice_data/costoffice_2022_clean_data/"

df_specialty <- out |>
  purrr::map(\(x) costoffice:::summarise_by_specialty(dir = outdir, name = x)) |>
  purrr::list_rbind()

df_state <- out |>
  purrr::map(\(x) costoffice:::summarise_by_state(dir = outdir, name = x)) |>
  purrr::list_rbind()

df_spec_state <- out |>
  purrr::map(\(x) costoffice:::summarise_by_spec_state(dir = outdir, name = x)) |>
  purrr::list_rbind()

Summary by Specialty

df_specialty
#> # A tibble: 332 × 9
#>    specialty          type      n   min avg_min avg_mode avg_max   max avg_range
#>    <chr>              <chr> <int> <dbl>   <dbl>    <dbl>   <dbl> <dbl>     <dbl>
#>  1 Addiction Medicine Esta… 43530  4.06    4.06     25.9    4.06  47.7      31.7
#>  2 Addiction Medicine Esta… 43530 16.3    16.3     104.    16.3  191.      127. 
#>  3 Addiction Medicine New … 43530 13.3    13.3      33.6   13.3   58.4      29.8
#>  4 Addiction Medicine New … 43530 53.1    53.1     134.    53.1  234.      119. 
#>  5 Advanced Heart Fa… Esta… 43530  4.06    4.06     25.9    4.06  47.7      31.7
#>  6 Advanced Heart Fa… Esta… 43530 16.3    16.3     104.    16.3  191.      127. 
#>  7 Advanced Heart Fa… New … 43530 13.3    13.3      33.6   13.3   58.4      29.8
#>  8 Advanced Heart Fa… New … 43530 53.1    53.1     134.    53.1  234.      119. 
#>  9 Allergy Immunology Esta… 43530  4.06    4.06     18.2    4.06  47.7      31.7
#> 10 Allergy Immunology Esta… 43530 16.3    16.3      73.0   16.3  191.      127. 
#> # ℹ 322 more rows
table(df_specialty$specialty, df_specialty$type) |> 
  as.data.frame() |> 
  dplyr::tibble() |> 
  dplyr::select(specialty = Var1, 
                type = Var2, 
                count = Freq) |> 
  dplyr::group_by(type) |> 
  dplyr::summarise(count = sum(count)) |> 
  dplyr::arrange(dplyr::desc(count))
#> # A tibble: 16 × 2
#>    type                      count
#>    <fct>                     <int>
#>  1 Established Copay (99214)    41
#>  2 Established Price (99214)    41
#>  3 Established Copay (99213)    39
#>  4 Established Price (99213)    39
#>  5 New Copay (99204)            32
#>  6 New Price (99204)            32
#>  7 New Copay (99203)            29
#>  8 New Price (99203)            29
#>  9 New Copay (99205)            18
#> 10 New Price (99205)            18
#> 11 New Copay (NA)                4
#> 12 New Price (NA)                4
#> 13 Established Copay (99211)     2
#> 14 Established Price (99211)     2
#> 15 Established Copay (99215)     1
#> 16 Established Price (99215)     1

Summary by State

df_state
#> # A tibble: 19,920 × 9
#>    state type                   n   min avg_min avg_mode avg_max   max avg_range
#>    <chr> <chr>              <int> <dbl>   <dbl>    <dbl>   <dbl> <dbl>     <dbl>
#>  1 AK    Established Copay…   282  5.59    5.59     34.0    5.59  47.7      42.1
#>  2 AK    Established Price…   282 22.4    22.4     136.    22.4  191.      168. 
#>  3 AK    New Copay (99204)    282 18.7    18.7      44.1   18.7   58.4      39.7
#>  4 AK    New Price (99204)    282 74.8    74.8     176.    74.8  234.      159. 
#>  5 AL    Established Copay…   859  4.06    4.06     24.8    4.06  34.8      30.5
#>  6 AL    Established Price…   859 16.3    16.3      99.3   16.3  139.      122. 
#>  7 AL    New Copay (99204)    859 13.4    13.4      32.3   13.4   42.7      28.8
#>  8 AL    New Price (99204)    859 53.5    53.5     129.    53.5  171.      115. 
#>  9 AR    Established Copay…   738  4.07    4.07     23.9    4.07  34.2      29.4
#> 10 AR    Established Price…   738 16.3    16.3      95.6   16.3  137.      118. 
#> # ℹ 19,910 more rows

table(df_state$state, df_state$type) |> 
  as.data.frame() |> 
  dplyr::tibble() |> 
  dplyr::select(state = Var1, 
                type = Var2, 
                count = Freq) |> 
  dplyr::group_by(type) |> 
  dplyr::summarise(count = sum(count)) |> 
  dplyr::arrange(dplyr::desc(count))
#> # A tibble: 16 × 2
#>    type                      count
#>    <fct>                     <int>
#>  1 Established Copay (99214)  2419
#>  2 Established Price (99214)  2419
#>  3 Established Copay (99213)  2301
#>  4 Established Price (99213)  2301
#>  5 New Copay (99204)          1888
#>  6 New Price (99204)          1888
#>  7 New Copay (99203)          1711
#>  8 New Price (99203)          1711
#>  9 New Copay (99205)          1062
#> 10 New Price (99205)          1062
#> 11 New Copay (NA)              236
#> 12 New Price (NA)              236
#> 13 Established Copay (99211)   118
#> 14 Established Price (99211)   118
#> 15 Established Copay (99215)    59
#> 16 Established Price (99215)    59

Summary by Specialty & State

df_spec_state
#> # A tibble: 19,920 × 10
#>    specialty          state type  zip_codes   min avg_min avg_mode avg_max   max
#>    <chr>              <chr> <chr>     <int> <dbl>   <dbl>    <dbl>   <dbl> <dbl>
#>  1 Addiction Medicine AK    Esta…       282  5.59    5.59     34.0    5.59  47.7
#>  2 Addiction Medicine AK    Esta…       282 22.4    22.4     136.    22.4  191. 
#>  3 Addiction Medicine AK    New …       282 18.7    18.7      44.1   18.7   58.4
#>  4 Addiction Medicine AK    New …       282 74.8    74.8     176.    74.8  234. 
#>  5 Addiction Medicine AL    Esta…       859  4.06    4.06     24.8    4.06  34.8
#>  6 Addiction Medicine AL    Esta…       859 16.3    16.3      99.3   16.3  139. 
#>  7 Addiction Medicine AL    New …       859 13.4    13.4      32.3   13.4   42.7
#>  8 Addiction Medicine AL    New …       859 53.5    53.5     129.    53.5  171. 
#>  9 Addiction Medicine AR    Esta…       738  4.07    4.07     23.9    4.07  34.2
#> 10 Addiction Medicine AR    Esta…       738 16.3    16.3      95.6   16.3  137. 
#> # ℹ 19,910 more rows
#> # ℹ 1 more variable: avg_range <dbl>

Example: Family Practice Specialty

fam_pract <- search_datasets(specialty = "family_practice") |> 
  dplyr::pull(csv_url) |> 
  costoffice:::tidyup(name = "Family Practice")
# Mode Variation by Region
fam_pract |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", c(patient, cost, hcpcs), sep = " ") |> 
  dplyr::group_by(region, type) |> 
  skimr::skim(dplyr::where(is.numeric)) |> 
  skimr::yank("numeric") |> 
  dplyr::filter(skim_variable == "mode") |> 
  dplyr::select(!c(n_missing, complete_rate, skim_variable)) |>
  dplyr::arrange(type) |> 
  head(20)

Variable type: numeric

region type mean sd p0 p25 p50 p75 p100 hist
Northeast Established Copay (99214) 26.94 1.87 24.69 25.41 25.83 28.37 31.32 ▇▂▃▂▂
Midwest Established Copay (99214) 25.15 0.72 24.32 24.57 25.16 25.37 27.76 ▇▆▂▁▁
South Established Copay (99214) 25.42 1.25 23.90 24.70 25.21 25.94 30.05 ▇▆▁▁▁
West Established Copay (99214) 27.04 2.04 24.21 25.52 26.58 28.05 33.96 ▇▇▂▁▁
NA Established Copay (99214) 26.40 1.14 23.90 26.32 26.32 26.32 31.32 ▂▇▂▁▁
Northeast Established Price (99214) 107.76 7.49 98.76 101.62 103.32 113.47 125.27 ▇▂▃▂▂
Midwest Established Price (99214) 100.61 2.88 97.26 98.30 100.66 101.50 111.04 ▇▆▂▁▁
South Established Price (99214) 101.68 5.01 95.61 98.79 100.83 103.76 120.20 ▇▆▁▁▁
West Established Price (99214) 108.16 8.17 96.84 102.07 106.33 112.22 135.85 ▇▇▂▁▁
NA Established Price (99214) 105.59 4.57 95.61 105.28 105.28 105.28 125.27 ▂▇▂▁▁
Northeast New Copay (99203) 23.37 1.72 21.31 21.99 22.31 24.61 27.52 ▇▂▃▂▂
Midwest New Copay (99203) 21.73 0.68 20.98 21.17 21.79 22.01 24.25 ▇▇▁▁▁
South New Copay (99203) 22.00 1.14 20.58 21.36 21.80 22.56 26.15 ▇▇▁▁▁
West New Copay (99203) 23.39 1.75 20.84 22.08 23.01 24.26 29.17 ▅▇▃▁▁
NA New Copay (99203) 22.88 1.03 20.58 22.82 22.82 22.82 27.52 ▂▇▂▁▁
Northeast New Price (99203) 93.47 6.89 85.25 87.96 89.24 98.42 110.06 ▇▂▃▂▂
Midwest New Price (99203) 86.94 2.74 83.92 84.67 87.16 88.06 96.99 ▇▇▁▁▁
South New Price (99203) 88.01 4.57 82.31 85.46 87.21 90.25 104.59 ▇▇▁▁▁
West New Price (99203) 93.56 6.99 83.37 88.34 92.05 97.05 116.69 ▅▇▃▁▁
NA New Price (99203) 91.51 4.10 82.31 91.28 91.28 91.28 110.06 ▂▇▂▁▁

# Established Patient Price (99214)
fam_pract |> 
  dplyr::filter(cost == "Price") |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", c(patient, cost, hcpcs), sep = " ") |> 
  dplyr::group_by(type) |> 
  skimr::skim(dplyr::where(is.numeric)) |> 
  skimr::yank("numeric") |> 
  dplyr::filter(type == "Established Price (99214)") |> 
  dplyr::select(!c(n_missing, complete_rate, type))

Variable type: numeric

skim_variable mean sd p0 p25 p50 p75 p100 hist
min 18.07 1.46 16.26 17.04 17.62 18.54 23.77 ▇▃▂▁▁
max 144.80 9.07 133.85 138.80 142.08 147.31 190.74 ▇▃▁▁▁
mode 103.65 6.63 95.61 98.99 101.50 105.65 135.85 ▇▃▁▁▁
range 126.72 7.68 117.58 121.56 124.49 128.95 168.37 ▇▂▁▁▁

# New Patient Price (99203)
fam_pract |> 
  dplyr::filter(cost == "Price") |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", c(patient, cost, hcpcs), sep = " ") |> 
  dplyr::group_by(type) |> 
  skimr::skim(dplyr::where(is.numeric)) |> 
  skimr::yank("numeric") |> 
  dplyr::filter(type == "New Price (99203)") |> 
  dplyr::select(!c(n_missing, complete_rate, type))

Variable type: numeric

skim_variable mean sd p0 p25 p50 p75 p100 hist
min 58.24 4.04 53.14 55.31 56.94 59.43 74.82 ▇▃▁▁▁
max 177.24 11.13 163.67 169.74 174.06 180.62 233.63 ▇▃▁▁▁
mode 89.70 5.93 82.31 85.61 87.96 91.33 116.69 ▇▃▁▁▁
range 119.00 7.12 110.54 114.54 116.89 120.94 158.82 ▇▂▁▁▁

# Established Patient Copay (99214)
fam_pract |> 
  dplyr::filter(cost == "Copay") |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", c(patient, cost, hcpcs), sep = " ") |> 
  dplyr::group_by(type) |> 
  skimr::skim(dplyr::where(is.numeric)) |> 
  skimr::yank("numeric") |> 
  dplyr::filter(type == "Established Copay (99214)") |> 
  dplyr::select(!c(n_missing, complete_rate, type))

Variable type: numeric

skim_variable mean sd p0 p25 p50 p75 p100 hist
min 4.52 0.36 4.06 4.26 4.40 4.64 5.94 ▇▃▂▁▁
max 36.20 2.27 33.46 34.70 35.52 36.83 47.69 ▇▃▁▁▁
mode 25.91 1.66 23.90 24.75 25.37 26.41 33.96 ▇▃▁▁▁
range 31.68 1.92 29.40 30.39 31.12 32.24 42.09 ▇▂▁▁▁

# New Patient Copay (99203)
fam_pract |> 
  dplyr::filter(cost == "Copay") |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", c(patient, cost, hcpcs), sep = " ") |> 
  dplyr::group_by(type) |> 
  skimr::skim(dplyr::where(is.numeric)) |> 
  skimr::yank("numeric") |> 
  dplyr::filter(type == "New Copay (99203)") |> 
  dplyr::select(!c(n_missing, complete_rate, type))

Variable type: numeric

skim_variable mean sd p0 p25 p50 p75 p100 hist
min 14.56 1.01 13.28 13.83 14.23 14.86 18.70 ▇▃▁▁▁
max 44.31 2.78 40.92 42.43 43.51 45.16 58.41 ▇▃▁▁▁
mode 22.42 1.48 20.58 21.40 21.99 22.83 29.17 ▇▃▁▁▁
range 29.75 1.78 27.63 28.64 29.22 30.24 39.70 ▇▂▁▁▁

Code
library(ggplot2)
library(cmapplot)
p <- fam_pract |> 
  dplyr::filter(cost == "Price") |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", c(patient, cost, hcpcs), sep = " ") |> 
  ggplot(aes(x = mode, 
             color = type, 
             fill = type)) + 
  cmapplot::theme_cmap(
    gridlines = "h", 
    axisticks = "x",
    panel.grid.major.y = element_line(color = "light gray")) +
  geom_density(alpha = 0.5) +
  scale_x_continuous(n.breaks = 5) +
  cmapplot::cmap_fill_discrete("governance") +
  cmapplot::cmap_color_discrete("governance") +
  guides(fill = guide_legend(reverse = TRUE),
         color = "none")

Code
gg_new_price <- fam_pract |> 
  dplyr::filter(cost == "Price", 
                patient == "New") |> 
  dplyr::filter(!is.na(state)) |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", 
               c(patient, cost, hcpcs), 
               sep = " ") |> 
  ggplot() + 
  cmapplot::theme_cmap(
    gridlines = "h", 
    axisticks = "x",
    panel.grid.major.y = element_line(color = "light gray")) +
  stat_summary(
    aes(x = mode, 
        y = forcats::fct_reorder(state, mode, median)),
    fun.min = min,
    fun.max = max,
    fun = median)

gg_est_price <- fam_pract |> 
  dplyr::filter(cost == "Price", 
                patient == "Established") |> 
  dplyr::filter(!is.na(state)) |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", 
               c(patient, cost, hcpcs), 
               sep = " ") |> 
  ggplot() + 
  cmapplot::theme_cmap(
    gridlines = "h", 
    axisticks = "x",
    panel.grid.major.y = element_line(color = "light gray")) +
  stat_summary(
    aes(x = mode, 
        y = forcats::fct_reorder(state, mode, median)),
    fun.min = min,
    fun.max = max,
    fun = median)

gg_new_copay <- fam_pract |> 
  dplyr::filter(cost == "Copay", 
                patient == "New") |> 
  dplyr::filter(!is.na(state)) |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", 
               c(patient, cost, hcpcs), 
               sep = " ") |> 
  ggplot() + 
  cmapplot::theme_cmap(
    gridlines = "h", 
    axisticks = "x",
    panel.grid.major.y = element_line(color = "light gray")) +
  stat_summary(
    aes(x = mode, 
        y = forcats::fct_reorder(state, mode, median)),
    fun.min = min,
    fun.max = max,
    fun = median)

gg_est_copay <- fam_pract |> 
  dplyr::filter(cost == "Copay", 
                patient == "Established") |> 
  dplyr::filter(!is.na(state)) |> 
  dplyr::mutate(hcpcs = paste0("(", hcpcs, ")")) |> 
  tidyr::unite("type", 
               c(patient, cost, hcpcs), 
               sep = " ") |> 
  ggplot() + 
  cmapplot::theme_cmap(
    gridlines = "h", 
    axisticks = "x",
    panel.grid.major.y = element_line(color = "light gray")) +
  stat_summary(
    aes(x = mode, 
        y = forcats::fct_reorder(state, mode, median)),
    fun.min = min,
    fun.max = max,
    fun = median)

Code of Conduct

Please note that the costoffice project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.