-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathusearch_pipeline.py
166 lines (153 loc) · 7.71 KB
/
usearch_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# -*- coding: utf-8 -*-
import glob, os, re, subprocess
#usearch = "usearch7.0.1090_i86linux64"
#usearch = "G:/Documents/Bioinformatics/Usearch/usearch8.0.1623_win32.exe"
usearch = "G:/Documents/Bioinformatics/Vsearch/vsearch-2.4.4-win-x86_64/vsearch.exe" # Vsearch gives much the same results
startupinfo = subprocess.STARTUPINFO() # Prevents cmd windows from opening
startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW # Prevents cmd windows from opening
# OTU clustering using UCLUST and recentering approach
# from https://www.drive5.com/usearch/manual7/recenter.html
def get_usearch_Sanger_OTUs(label, f, log):
print("Clustering otus from {0} sequences...".format(label))
# Dereplicate the sequences
derep = "{0} -derep_fulllength {1} -output {2}_uniques.fasta -sizeout".format(usearch, f, label)
subprocess.call(derep.split(), stdout=log, stderr=subprocess.STDOUT, startupinfo=startupinfo)
log.write('\nDereplicate filtered/trimmed reads:\n' + str(derep) + '\n')
# Cluster the dereplicated sequences into OTUs (automatically sorted by length)
clusterOTUs = "{0} -cluster_fast {1}_uniques.fasta -id 0.97 -centroids {1}_OTUs_centroids.fasta \
-consout {1}_OTUs_consensus.fasta".format(usearch, label)
subprocess.call(clusterOTUs.split(), stdout=log, stderr=subprocess.STDOUT, startupinfo=startupinfo)
log.write('\ncluster_fast into OTUs at 97%:\n' + str(clusterOTUs) + '\n')
# Sort the consensus sequences by abundance
sortbysize = "{0} -sortbysize {1}_OTUs_consensus.fasta -output {1}_OTUs_consensus_sorted.fasta".format(usearch, label)
subprocess.call(sortbysize.split(), stdout=log, stderr=subprocess.STDOUT, startupinfo=startupinfo)
log.write('\nSort OTU consensus seqs by size:\n' + str(sortbysize) + '\n')
# Cluster the abundance-sorted consensus sequences again, to remove any redundant OTUs
clusterOTUs2 = "{0} -cluster_smallmem {1}_OTUs_consensus_sorted.fasta -usersort -id 0.97 \
-centroids {1}_OTUs_centroids_2.fasta".format(usearch, label)
subprocess.call(clusterOTUs2.split(), stdout=log, stderr=subprocess.STDOUT, startupinfo=startupinfo)
log.write('\nCluster consensus seqs into OTUs at 97%:\n' + str(clusterOTUs2) + '\n')
# Assign all the barcode sequences to the OTU centroids
searchReads = "{0} -usearch_global {1} -db {2}_OTUs_centroids_2.fasta -strand plus \
-id 0.97 -uc {2}_OTUs_readmap.uc -output_no_hits".format(usearch, f, label)
subprocess.call(searchReads.split(), stdout=log, stderr=subprocess.STDOUT)
log.write("\nMap the filtered/trimmed reads to the OTUs\n" + searchReads + "\n")
# Function to make an OTU table from usearch readmap output
def make_otutable_usearch(readmap):
samples = []
otus = []
hits = {}
# Get samples and otu centroids from readmap
print("Getting samples and otus from readmap...")
for row in readmap:
if row.startswith("H"):
query = row.strip().split("\t")[8]
sample = "{0}_{1}".format(query.split("|")[2], query.split("|")[4])
#sample = query.split("|")[2]
if sample not in samples:
samples.append(sample)
hit = row.strip().split("\t")[9]
#hit = re.split("^centroid=", hit)[1].strip()
if hit not in otus:
otus.append(hit)
hits[query] = hit
# Include any sequences without hits to OTU centroids
elif row.startswith("S"):
seq = row.split("\t")[8].strip()
#print(seq)
if seq not in otus:
otus.append(seq)
hits[seq] = "S"
# Set up bins and tables for otu counts
bins = [[0 for row in range(len(samples))] for col in range(len(otus))]
# Get OTU counts from readmap
print("Getting OTU counts...")
for query, hit in hits.items():
#sample = "{0}_{1}".format(query.split("|")[2], query.split("|")[4])
sample = query.split("|")[2]
if hit is not "S":
bins[otus.index(hit)][samples.index(sample)] += 1
else:
bins[otus.index(query)][samples.index(sample)] += 1
# Write counts to table
with open("{0}_otutable_U6.txt".format(label), "w") as otutable:
for sample in samples:
# Make the two highest elevation sample names consistent with the others
sample = re.sub("CM30c30", "9", sample)
sample = re.sub("LB1", "10", sample)
otutable.write("\t{0}".format(sample))
for i in range(len(bins)):
otutable.write("\n{0}".format(otus[i]))
for item in bins[i]:
otutable.write("\t{0}".format(item))
print("Finished {0}".format(label))
# Vsearch readmap output is a bit different, includes linebreaks, requiring different treatment:
def make_otutable_vsearch(readmap):
samples = []
otus = []
hits = {}
# Get samples and otu centroids from readmap
print("Getting samples and otus from readmap...")
for row in readmap:
if row.startswith("H"):
query = row.strip().split("\t")[8]
sample = "{0}_{1}".format(query.split("|")[2], query.split("|")[4])
#sample = query.split("|")[2]
if sample not in samples:
samples.append(sample)
hit = readmap.readline().strip() # Load the next line
#otu = readmap.readline().split("\t")[1]
hit = re.split("^centroid=", hit)[1].strip()
if hit not in otus:
otus.append(hit)
hits[query] = hit
# Include any sequences without hits to OTU centroids
elif row.startswith("N"):
seq = row.split("\t")[8].strip()
#print(seq)
if seq not in otus:
otus.append(seq)
hits[seq] = "None"
# Set up bins and tables for otu counts
bins = [[0 for row in range(len(samples))] for col in range(len(otus))]
# Get OTU counts from readmap
print("Getting OTU counts...")
for query, hit in hits.items():
sample = "{0}_{1}".format(query.split("|")[2], query.split("|")[4])
#sample = query.split("|")[2]
if hit is not "None":
bins[otus.index(hit)][samples.index(sample)] += 1
else:
bins[otus.index(query)][samples.index(sample)] += 1
# Write counts to table
with open("{0}_otutable.txt".format(label), "w") as otutable:
for sample in samples:
# Make the two highest elevation sample names consistent with the others
sample = re.sub("CM30c30", "9", sample)
sample = re.sub("LB1", "10", sample)
otutable.write("\t{0}".format(sample))
for i in range(len(bins)):
otutable.write("\n{0}".format(otus[i]))
for item in bins[i]:
otutable.write("\t{0}".format(item))
# To cluster COI and 28S barcode sequences into OTUs:
os.chdir("G:/Documents/GitHub/Barcoding_invertebrate_biodiversity/Invert_DNA_barcode_data/")
os.chdir("./Invert_DNA_barcode_data/")
infiles = glob.glob("*barcode_sequences.fasta")
for f in infiles:
label = f.split("_barcode_")[0]
print(label)
with open("{0}_usearch_log.txt".format(label), "a") as log:
get_usearch_Sanger_OTUs(label, f, log)
with open("{0}_OTUs_readmap.uc".format(label), "r") as readmap:
#make_otutable_usearch(readmap)
make_otutable_vsearch(readmap)
print("Finished {0}".format(label))
# To cluster BOLD database sequences into OTUs:
os.chdir("./BOLD_NZ_seqs_2018/")
infiles = glob.glob("BOLD_NZ*keep.fasta")
for f in infiles:
label = f.split(".fa")[0]
with open("{0}_usearch_log.txt".format(label), "a") as log:
get_usearch_Sanger_OTUs(label, f, log)
print("Finished {0}".format(label))