-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_train.py
598 lines (511 loc) · 26.7 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
#!/usr/bin/env python
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import sys
from pathlib import Path
#module_path = str(Path(__file__).parent.parent.parent)
#if module_path not in sys.path:
# sys.path.append(module_path)
import json
import logging
import math
import os
import sys
import warnings
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union, List, Dict
import datasets
import evaluate
import torch
from datasets import load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
Trainer,
Seq2SeqTrainer,
TrainingArguments,
Seq2SeqTrainingArguments,
DataCollatorWithPadding,
DataCollatorForSeq2Seq,
default_data_collator,
is_torch_tpu_available,
set_seed,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
import numpy as np
from peft import get_peft_config, get_peft_model, PromptTuningInit, PromptTuningConfig, TaskType, PeftType, LoraConfig
# Local imports
from utils import WandbPredictionProgressCallback, ClmSeq2SeqTrainer
from arguments import ModelArguments, DataTrainingArguments, LoggingArguments, PeftArguments
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.35.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((PeftArguments, ModelArguments, DataTrainingArguments, LoggingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
peft_args, model_args, data_args, logging_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
peft_args, model_args, data_args, logging_args, training_args = parser.parse_args_into_dataclasses()
if model_args.use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.",
FutureWarning,
)
if model_args.token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
model_args.token = model_args.use_auth_token
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
#send_example_telemetry("run_clm", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
streaming=data_args.streaming,
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
token=model_args.token,
streaming=data_args.streaming,
)
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
token=model_args.token,
streaming=data_args.streaming,
)
else:
data_files = {}
dataset_args = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = (
data_args.train_file.split(".")[-1]
if data_args.train_file is not None
else data_args.validation_file.split(".")[-1]
)
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
**dataset_args,
)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
cache_dir=model_args.cache_dir,
token=model_args.token,
**dataset_args,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
cache_dir=model_args.cache_dir,
token=model_args.token,
**dataset_args,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.token,
"trust_remote_code": model_args.trust_remote_code,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"token": model_args.token,
"trust_remote_code": model_args.trust_remote_code,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.warning(f"Tokenizer does not have a pad token, setting it to `{tokenizer.eos_token_id=}`.")
if model_args.model_name_or_path:
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
model = AutoModelForCausalLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
torch_dtype=torch_dtype,
low_cpu_mem_usage=model_args.low_cpu_mem_usage,
)
# this is here to save gpu vram. Likely only needed when using 40b or when oom issues happen ref: https://stackoverflow.com/questions/76633335/why-does-hugging-face-falcon-model-use-mode-config-use-cache-false-why-wouldn
#model.config.use_cache = False
else:
model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code)
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Initialize PEFT model if needed
if peft_args.use_lora or peft_args.use_prompt_tuning or peft_args.use_ia3:
if peft_args.use_prompt_tuning:
from peft import PromptTuningConfig, PromptTuningInit, TaskType
peft_config = PromptTuningConfig(
task_type=TaskType.CAUSAL_LM,
num_virtual_tokens=peft_args.num_virtual_tokens,
prompt_tuning_init=PromptTuningInit.TEXT if peft_args.virtual_tokens_init_text else PromptTuningInit.RANDOM,
prompt_tuning_init_text=peft_args.virtual_tokens_init_text,
tokenizer_name_or_path=tokenizer.init_kwargs["name_or_path"],
)
if peft_args.use_lora:
from peft import LoraConfig, TaskType
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=peft_args.rank,
target_modules=peft_args.target_modules,
lora_alpha=peft_args.lora_alpha,
lora_dropout=peft_args.lora_dropout,
fan_in_fan_out=peft_args.fan_in_fan_out,
bias=peft_args.bias,
modules_to_save=peft_args.modules_to_save,
layers_to_transform=peft_args.layers_to_transform,
layers_pattern=peft_args.layers_pattern,
rank_pattern=peft_args.rank_pattern,
alpha_pattern=peft_args.alpha_pattern
)
if peft_args.use_ia3:
from peft import IA3Config, TaskType
peft_config = IA3Config(
task_type=TaskType.CAUSAL_LM,
target_modules=peft_args.target_modules,
feedforward_modules=peft_args.feedforward_modules,
fan_in_fan_out=peft_args.fan_in_fan_out,
modules_to_save=peft_args.modules_to_save,
init_ia3_weights=peft_args.init_ia3_weights
)
model = get_peft_model(model, peft_config, adapter_name=peft_args.adapter_name)
# Preprocessing the datasets.
# Data collator
#label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
#label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# First we tokenize all the texts.
if training_args.do_train:
column_names = list(raw_datasets["train"].features)
else:
column_names = list(raw_datasets["validation"].features)
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
if hasattr(config, "max_position_embeddings"):
max_pos_embeddings = config.max_position_embeddings
else:
# Define a default value if the attribute is missing in the config.
max_pos_embeddings = 1024
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > max_pos_embeddings:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx."
)
if max_pos_embeddings > 0:
block_size = min(1024, max_pos_embeddings)
else:
block_size = 1024
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) seems to be larger than the maximum length for the model "
f"({tokenizer.model_max_length}). Using block_size={data_args.block_size}."
)
# Some models have inproperly tokenizer.model_max_length, so we allow overriding it
#block_size = min(data_args.block_size, tokenizer.model_max_length)
block_size = data_args.block_size
if peft_args.use_prompt_tuning:
block_size -= peft_args.num_virtual_tokens
if data_collator.pad_to_multiple_of is not None:
block_size -= data_collator.pad_to_multiple_of - (peft_args.num_virtual_tokens % data_collator.pad_to_multiple_of)
logger.warning(f"Prompt tuning is used while inputs are padded to multiple of {data_collator.pad_to_multiple_of}. "
f"New block size is {block_size} to accomodate virtual tokens.")
def tokenize_function(examples):
with CaptureLogger(tok_logger) as cl:
input_ids = None
attention_mask = None
for col in data_args.text_column_names:
if input_ids is None:
tokenized_example = tokenizer(examples[col], add_special_tokens=True)
input_ids = tokenized_example["input_ids"]
attention_mask = tokenized_example["attention_mask"]
else:
tokenized_example = tokenizer(examples[col], add_special_tokens=False)
[input_ids[i].extend(tokenized_example["input_ids"][i]) for i in range(len(input_ids))]
[attention_mask[i].extend(tokenized_example["attention_mask"][i]) for i in range(len(attention_mask))]
if data_args.target_colum_name is not None:
tokenized_example = tokenizer(examples[data_args.target_colum_name], add_special_tokens=False)
labels = [[-100]*len(input_ids[i]) for i in range(len(input_ids))]
[input_ids[i].extend(tokenized_example["input_ids"][i]) for i in range(len(input_ids))]
[attention_mask[i].extend(tokenized_example["attention_mask"][i]) for i in range(len(attention_mask))]
[labels[i].extend(tokenized_example["input_ids"][i]) for i in range(len(labels))]
else:
labels = input_ids.copy()
# clm input could be much much longer than block_size
if "Token indices sequence length is longer than the" in cl.out:
tok_logger.warning(
"^^^^^^^^^^^^^^^^ Please ignore the warning above - too long input will be filtered out"
" before being passed to the model."
)
return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}
def filter_toolong(examples):
return [ len(ex) <= block_size for ex in examples["input_ids"] ]
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
column_names = list(train_dataset.features)
with training_args.main_process_first(desc="dataset map tokenization"):
if not data_args.streaming:
train_dataset = train_dataset.map(tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset")
train_dataset = train_dataset.filter(filter_toolong, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc="Filtering toolong")
else:
train_dataset = train_dataset.map(tokenize_function, batched=True, remove_columns=column_names)
train_dataset = train_dataset.filter(filter_toolong, batched=True)
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
column_names = list(eval_dataset.features)
with training_args.main_process_first(desc="dataset map tokenization"):
if not data_args.streaming:
eval_dataset = eval_dataset.map(tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset")
eval_dataset = eval_dataset.filter(filter_toolong, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc="Filtering toolong")
else:
eval_dataset = eval_dataset.map(tokenize_function, batched=True, remove_columns=column_names)
eval_dataset = eval_dataset.filter(filter_toolong, batched=True)
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
# Metrics
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics but we need to shift the labels
labels = labels[:, 1:]
preds = preds[:, :-1]
if peft_args.use_prompt_tuning:
preds = preds[:, peft_args.num_virtual_tokens:]
labels = labels.reshape(-1)
preds = preds.reshape(-1)
return metric.compute(predictions=preds, references=labels)
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
training_args.gradient_checkpointing_kwargs={"use_reentrant": False} if training_args.gradient_checkpointing else None
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
)
if logging_args.log_preditions:
progress_callback = WandbPredictionProgressCallback(trainer, tokenizer, eval_dataset, logging_args.log_predition_samples)
trainer.add_callback(progress_callback)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
### if deepspeed is used, and half precision is used, to save the model in fp32 we need a checkpoint that we can extract the fp32 model from.
### see https://github.com/huggingface/transformers/issues/28921
if training_args.deepspeed and (training_args.fp16 or training_args.bf16):
logger.warning(
"Saved model is in half-precision. "
"Saving extra checkpoint for allowing fp32 parameters extraction. "
"Use the zero_to_fp32.py script to extract the fp32 model from the checkpoint.")
trainer.model_wrapped.save_checkpoint(training_args.output_dir)
###
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()