Skip to content

anhnh2002/XTTSv2-Finetuning-for-New-Languages

Repository files navigation

XTTSv2 Finetuning Guide for New Languages

This guide provides instructions for finetuning XTTSv2 on a new language, using Vietnamese (vi) as an example.

[UPDATE] A finetuned model for Vietnamese is now available at anhnh2002/vnTTS on Hugging Face

Table of Contents

  1. Installation
  2. Data Preparation
  3. Pretrained Model Download
  4. Vocabulary Extension and Configuration Adjustment
  5. DVAE Finetuning (Optional)
  6. GPT Finetuning
  7. Usage Example

1. Installation

First, clone the repository and install the necessary dependencies:

git clone https://github.com/nguyenhoanganh2002/XTTSv2-Finetuning-for-New-Languages.git
cd XTTSv2-Finetuning-for-New-Languages
pip install -r requirements.txt

2. Data Preparation

Ensure your data is organized as follows:

project_root/
├── datasets-1/
│   ├── wavs/
│   │   ├── xxx.wav
│   │   ├── yyy.wav
│   │   ├── zzz.wav
│   │   └── ...
│   ├── metadata_train.csv
│   ├── metadata_eval.csv
├── datasets-2/
│   ├── wavs/
│   │   ├── xxx.wav
│   │   ├── yyy.wav
│   │   ├── zzz.wav
│   │   └── ...
│   ├── metadata_train.csv
│   ├── metadata_eval.csv
...
│   
├── recipes/
├── scripts/
├── TTS/
└── README.md

Format your metadata_train.csv and metadata_eval.csv files as follows:

audio_file|text|speaker_name
wavs/xxx.wav|How do you do?|@X
wavs/yyy.wav|Nice to meet you.|@Y
wavs/zzz.wav|Good to see you.|@Z

3. Pretrained Model Download

Execute the following command to download the pretrained model:

python download_checkpoint.py --output_path checkpoints/

4. Vocabulary Extension and Configuration Adjustment

Extend the vocabulary and adjust the configuration with:

python extend_vocab_config.py --output_path=checkpoints/ --metadata_path datasets/metadata_train.csv --language vi --extended_vocab_size 2000

5. DVAE Finetuning (Optional)

To finetune the DVAE, run:

CUDA_VISIBLE_DEVICES=0 python train_dvae_xtts.py \
--output_path=checkpoints/ \
--train_csv_path=datasets/metadata_train.csv \
--eval_csv_path=datasets/metadata_eval.csv \
--language="vi" \
--num_epochs=5 \
--batch_size=512 \
--lr=5e-6

6. GPT Finetuning

For GPT finetuning, execute:

[OUTDATED]

CUDA_VISIBLE_DEVICES=0 python train_gpt_xtts.py \
--output_path=checkpoints/ \
--train_csv_path=datasets/metadata_train.csv \
--eval_csv_path=datasets/metadata_eval.csv \
--language="vi" \
--num_epochs=5 \
--batch_size=8 \
--grad_acumm=2 \
--max_text_length=250 \
--max_audio_length=255995 \
--weight_decay=1e-2 \
--lr=5e-6 \
--save_step=2000

[UPDATE - Supports training multiple datasets. Format metadatas parameter as follows: path_to_train_csv_dataset-1,path_to_eval_csv_dataset-1,language_dataset-1 path_to_train_csv_dataset-2,path_to_eval_csv_dataset-2,language_dataset-2 ...]

CUDA_VISIBLE_DEVICES=0 python train_gpt_xtts.py \
--output_path checkpoints/ \
--metadatas datasets-1/metadata_train.csv,datasets-1/metadata_eval.csv,vi datasets-2/metadata_train.csv,datasets-2/metadata_eval.csv,vi \
--num_epochs 5 \
--batch_size 8 \
--grad_acumm 4 \
--max_text_length 400 \
--max_audio_length 330750 \
--weight_decay 1e-2 \
--lr 5e-6 \
--save_step 50000

7. Usage Example

Here's a sample code snippet demonstrating how to use the finetuned model:

import torch
import torchaudio
from tqdm import tqdm
from underthesea import sent_tokenize

from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts

# Device configuration
device = "cuda:0" if torch.cuda.is_available() else "cpu"

# Model paths
xtts_checkpoint = "checkpoints/GPT_XTTS_FT-August-30-2024_08+19AM-6a6b942/best_model_99875.pth"
xtts_config = "checkpoints/GPT_XTTS_FT-August-30-2024_08+19AM-6a6b942/config.json"
xtts_vocab = "checkpoints/XTTS_v2.0_original_model_files/vocab.json"

# Load model
config = XttsConfig()
config.load_json(xtts_config)
XTTS_MODEL = Xtts.init_from_config(config)
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
XTTS_MODEL.to(device)

print("Model loaded successfully!")

# Inference
tts_text = "Good to see you."
speaker_audio_file = "ref.wav"
lang = "vi"

gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
    audio_path=speaker_audio_file,
    gpt_cond_len=XTTS_MODEL.config.gpt_cond_len,
    max_ref_length=XTTS_MODEL.config.max_ref_len,
    sound_norm_refs=XTTS_MODEL.config.sound_norm_refs,
)

tts_texts = sent_tokenize(tts_text)

wav_chunks = []
for text in tqdm(tts_texts):
    wav_chunk = XTTS_MODEL.inference(
        text=text,
        language=lang,
        gpt_cond_latent=gpt_cond_latent,
        speaker_embedding=speaker_embedding,
        temperature=0.1,
        length_penalty=1.0,
        repetition_penalty=10.0,
        top_k=10,
        top_p=0.3,
    )
    wav_chunks.append(torch.tensor(wav_chunk["wav"]))

out_wav = torch.cat(wav_chunks, dim=0).unsqueeze(0).cpu()

# Play audio (for Jupyter Notebook)
from IPython.display import Audio
Audio(out_wav, rate=24000)

Note: Finetuning the HiFiGAN decoder was attempted but resulted in worse performance. DVAE and GPT finetuning are sufficient for optimal results.

Update: If you have enough short texts in your datasets (about 20 hours), you do not need to finetune DVAE.