-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
74 lines (60 loc) · 2.08 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
class Dataset:
def __init__(self, path):
self.df = pd.read_csv("training_data.csv")
self.data = self.df.to_numpy()
self.stopwords = set(stopwords.words('english'))
self.essay_id = self.data[:,0]
self.text = self.data[:,1]
self.scores = self.data[:,2:8]
self.new_data = []
self.vocab = set()
self.word_to_id = None
def preprocess(self):
for i in range(len(self.essay_id)):
text = self.text[i].lower()
text = " ".join([word for word in text.split() if '@' not in word])
text = word_tokenize(text)
text = [word for word in text if word not in self.stopwords]
self.text[i] = text
def create_vocab(self):
for line in self.text:
for word in line:
self.vocab.add(word)
self.vocab = sorted(list(self.vocab))
self.word_to_id = {word:i for i, word in enumerate(self.vocab)}
def create_chunks(self):
for idx in range(len(self.essay_id)):
ess = self.text[idx]
n = len(ess)
self.new_data.append([ess[:n//3], self.scores[idx]])
self.new_data.append([ess[n//3:2*n//3], self.scores[idx]])
self.new_data.append([ess[2*n//3:], self.scores[idx]])
self.new_data = np.array(self.new_data)
def text_num(self):
for i, line in enumerate(self.text):
x = []
for word in line:
x.append(self.word_to_id[word])
self.text[i] = x
import pandas as pd
import nltk
#nltk.download()
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
import numpy as np
dataset = Dataset("./training_data.csv")
dataset.preprocess()
dataset.create_vocab()
print(len(dataset.vocab))
print(dataset.vocab[:10])
print(dataset.word_to_id['!'])
dataset.create_chunks()
dataset.text_num()
print(dataset.text[0])
"""
print(len(dataset.new_data), len(dataset.essay_id))
print("0: ", dataset.new_data[0, 0])
print("1: ", dataset.new_data[1, 0])
print("2: ", dataset.new_data[2, 0])
print(dataset.text[0])
"""