-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_evdnerf_helpers.py
447 lines (368 loc) · 17.6 KB
/
run_evdnerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import torch
torch.autograd.set_detect_anomaly(True)
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch import searchsorted
import glob, os
import cv2
SMALL_EPS = 1e-10
EPS = 1e-5
# Misc
img2mse = lambda x, y : torch.mean((x - y) ** 2)
img2mse_masked = lambda x, y, mask : torch.mean((torch.masked_select(x, torch.unsqueeze(mask, 1)) - torch.masked_select(y, torch.unsqueeze(mask, 1))) ** 2)
mse2psnr = lambda x, range=1.0 : -10. * torch.log10(x / torch.Tensor([range])**2)
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
# RGB -> B intensity -> L Gamma-corrected log image conversion
img2I = lambda Im : torch.sum(Im, 1)/3.
img2L = lambda Im, g=1.0 : 1/g * torch.log( Im )
compute_pred_ev = lambda im1, im0, g=1.0 : 1/g * ( torch.log(im1+SMALL_EPS) - torch.log(im0+SMALL_EPS) ).squeeze()
evim_to8b = lambda evim, max_val : (np.abs(evim/max_val) * 255).astype(np.uint8)
# compute a piecewise loss function that:
# - is 0 for the range in which the correct number of events would be calculated from the predicted difference in log intensity (for a single positive event, the range [pos_thresh, pos_thresh+pos_thresh))
# - is squared error outside the range, (relative to center of the range?)
# inputs:
# - pred: predicted difference in log intensity (continuous signal)
# - gt: ground truth eventstream, binned by the threshold values
def ev_threshold_loss(pred, gt, pos_thresh=0.2, neg_thresh=0.2):
neg_thresh *= -1 # make neg_thresh negative to aid in arithmetic
# print(pos_thresh, neg_thresh)
loss = torch.zeros_like(pred)
pos_inwindow = torch.logical_and(gt >= 0.0, torch.logical_and(pred >= gt, pred < gt + pos_thresh))
# print(pos_inwindow)
neg_inwindow = torch.logical_and(gt < 0.0, torch.logical_and(pred <= gt, pred > gt + neg_thresh))
# print(neg_inwindow)
loss[torch.logical_and(pos_inwindow, neg_inwindow)] = 0.0
# make center of in_window the target
target = gt.clone()
target[gt > 0] += pos_thresh/2
target[gt < 0] += neg_thresh/2
diff = pred - target
loss[torch.logical_and(~pos_inwindow, ~neg_inwindow)] = (diff[torch.logical_and(~pos_inwindow, ~neg_inwindow)])**2
return loss.mean()
# dist loss from mip nerf 360
def compute_dist_loss(weights, zvals):
mid_zs = 0.5 * (zvals[...,1:] + zvals[...,:-1])
dist_loss = ((weights[...,:-1].unsqueeze(1) * weights[...,:-1].unsqueeze(2)) * torch.abs(mid_zs.unsqueeze(1) - mid_zs.unsqueeze(2))).sum((1,2)) + 1/3 * ((weights[...,:-1]**2) * (zvals[...,1:] - zvals[...,:-1])).sum(1)
dist_loss = dist_loss.mean()
return dist_loss
# affine transformation to adjust predicted intensity images to match ground truth white balance
# TODO this should be done in log-space but the transformation isn't working
def correct_prediction_image(pred, target_rgb, path_to_gt_ims):
if target_rgb is None or target_rgb.max() < .01:
# use image(s) in path_to_gt_ims
# load images in path_to_gt_ims as grayscale
gt = np.stack([cv2.resize(cv2.imread(imfile).mean(2)/255.0, (pred.shape[1], pred.shape[0]), interpolation=cv2.INTER_AREA) for imfile in glob.glob(os.path.join(path_to_gt_ims, '*.png'))])
else:
gt = target_rgb
X = torch.log(gt.reshape(-1, 1) + 0.1)
Y = torch.log(pred.reshape(-1, 1) + 0.1)
# calulate affine transformation in log-space
A = (torch.mean(X*Y, 0)-torch.mean(X, 0)*torch.mean(Y, 0))/(torch.mean(Y*Y, 0)-torch.mean(Y, 0)**2)
B = torch.mean(X, 0)-A*torch.mean(Y, 0)
Y = torch.exp( Y * A + B ) - 0.1
return (torch.maximum(Y, torch.zeros_like(Y))).reshape(pred.shape)
# Positional encoding (section 5.1)
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x : x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, input_dims, i=0):
if i == -1:
return nn.Identity(), input_dims
embed_kwargs = {
'include_input' : True,
'input_dims' : input_dims,
'max_freq_log2' : multires-1,
'num_freqs' : multires,
'log_sampling' : True,
'periodic_fns' : [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj : eo.embed(x)
return embed, embedder_obj.out_dim
# Model
class DirectTemporalNeRF(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, input_ch_time=1, output_ch=4, skips=[4],
use_viewdirs=False, memory=[], embed_fn=None, zero_canonical=True, output_color_ch=3, init_method=None):
super(DirectTemporalNeRF, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.input_ch_time = input_ch_time
self.skips = skips
self.use_viewdirs = use_viewdirs
self.memory = memory
self.embed_fn = embed_fn
self.zero_canonical = zero_canonical
self.init_method = init_method
self._occ = NeRFOriginal(D=D, W=W, input_ch=input_ch, input_ch_views=input_ch_views,
input_ch_time=input_ch_time, output_ch=output_ch, skips=skips,
use_viewdirs=use_viewdirs, memory=memory, embed_fn=embed_fn, output_color_ch=output_color_ch, init_method=init_method)
self._time, self._time_out = self.create_time_net()
def create_time_net(self):
layers = [nn.Linear(self.input_ch + self.input_ch_time, self.W)]
for i in range(self.D - 1):
if i in self.memory:
raise NotImplementedError
else:
layer = nn.Linear
in_channels = self.W
if i in self.skips:
in_channels += self.input_ch
layers += [layer(in_channels, self.W)]
densenetwork = nn.ModuleList(layers)
final = nn.Linear(self.W, 3)
if self.init_method is not None:
for layer in densenetwork:
self.init_method(layer.weight)
self.init_method(final.weight)
return densenetwork, final
def query_time(self, new_pts, t, net, net_final):
h = torch.cat([new_pts, t], dim=-1)
for i, l in enumerate(net):
h = net[i](h)
h = torch.relu(h)
if i in self.skips:
h = torch.cat([new_pts, h], -1)
return net_final(h)
def forward(self, x, ts):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
t = ts[0]
# assert len(torch.unique(t[:, :1])) == 1, "Only accepts all points from same time"
cur_time = t[0, 0]
# if cur_time == 0. and self.zero_canonical:
# # t=0 is by definition without deformation
# dx = torch.zeros_like(input_pts[:, :3])
# else:
nz_t = (t[:,0]!=0.)
# run deformation network
dx = self.query_time(input_pts[nz_t], t[nz_t], self._time, self._time_out)
dx_full = torch.zeros_like(input_pts[:, :3], device=input_pts.device)
dx_full[nz_t] = dx
input_pts_orig = input_pts[:, :3]
input_pts = self.embed_fn(input_pts_orig + dx_full)
# run canonical network
out, _ = self._occ(torch.cat([input_pts, input_views], dim=-1), t)
return out, dx_full
class NeRF:
@staticmethod
def get_by_name(type, *args, **kwargs):
print ("NeRF type selected: %s" % type)
if type == "original":
model = NeRFOriginal(*args, **kwargs)
elif type == "direct_temporal":
model = DirectTemporalNeRF(*args, **kwargs)
else:
raise ValueError("Type %s not recognized." % type)
return model
class NeRFOriginal(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, input_ch_views=3, input_ch_time=1, output_ch=4, skips=[4],
use_viewdirs=False, memory=[], embed_fn=None, output_color_ch=3, zero_canonical=True, init_method=None):
super(NeRFOriginal, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.input_ch_views = input_ch_views
self.skips = skips
self.use_viewdirs = use_viewdirs
# self.pts_linears = nn.ModuleList(
# [nn.Linear(input_ch, W)] +
# [nn.Linear(W, W) if i not in self.skips else nn.Linear(W + input_ch, W) for i in range(D-1)])
layers = [nn.Linear(input_ch, W)]
for i in range(D - 1):
if i in memory:
raise NotImplementedError
else:
layer = nn.Linear
in_channels = W
if i in self.skips:
in_channels += input_ch
layers += [layer(in_channels, W)]
self.pts_linears = nn.ModuleList(layers)
### Implementation according to the official code release (https://github.com/bmild/nerf/blob/master/run_nerf_helpers.py#L104-L105)
self.views_linears = nn.ModuleList([nn.Linear(input_ch_views + W, W//2)])
### Implementation according to the paper
# self.views_linears = nn.ModuleList(
# [nn.Linear(input_ch_views + W, W//2)] + [nn.Linear(W//2, W//2) for i in range(D//2)])
if use_viewdirs:
self.feature_linear = nn.Linear(W, W)
self.alpha_linear = nn.Linear(W, 1)
self.rgb_linear = nn.Linear(W//2, output_color_ch)
else:
self.output_linear = nn.Linear(W, output_ch)
if init_method is not None:
for layer in self.pts_linears:
init_method(layer.weight)
for layer in self.views_linears:
init_method(layer.weight)
init_method(self.feature_linear.weight)
init_method(self.alpha_linear.weight)
init_method(self.rgb_linear.weight)
def forward(self, x, ts):
input_pts, input_views = torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
h = input_pts
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
h = torch.relu(h)
if i in self.skips:
h = torch.cat([input_pts, h], -1)
if self.use_viewdirs:
alpha = self.alpha_linear(h)
feature = self.feature_linear(h)
h = torch.cat([feature, input_views], -1)
for i, l in enumerate(self.views_linears):
h = self.views_linears[i](h)
h = torch.relu(h)
rgb = self.rgb_linear(h)
outputs = torch.cat([rgb, alpha], -1)
else:
outputs = self.output_linear(h)
return outputs, torch.zeros_like(input_pts[:, :3])
def load_weights_from_keras(self, weights):
assert self.use_viewdirs, "Not implemented if use_viewdirs=False"
# Load pts_linears
for i in range(self.D):
idx_pts_linears = 2 * i
self.pts_linears[i].weight.data = torch.from_numpy(np.transpose(weights[idx_pts_linears]))
self.pts_linears[i].bias.data = torch.from_numpy(np.transpose(weights[idx_pts_linears+1]))
# Load feature_linear
idx_feature_linear = 2 * self.D
self.feature_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_feature_linear]))
self.feature_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_feature_linear+1]))
# Load views_linears
idx_views_linears = 2 * self.D + 2
self.views_linears[0].weight.data = torch.from_numpy(np.transpose(weights[idx_views_linears]))
self.views_linears[0].bias.data = torch.from_numpy(np.transpose(weights[idx_views_linears+1]))
# Load rgb_linear
idx_rbg_linear = 2 * self.D + 4
self.rgb_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear]))
self.rgb_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_rbg_linear+1]))
# Load alpha_linear
idx_alpha_linear = 2 * self.D + 6
self.alpha_linear.weight.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear]))
self.alpha_linear.bias.data = torch.from_numpy(np.transpose(weights[idx_alpha_linear+1]))
def hsv_to_rgb(h, s, v):
'''
h,s,v in range [0,1]
'''
hi = torch.floor(h * 6)
f = h * 6. - hi
p = v * (1. - s)
q = v * (1. - f * s)
t = v * (1. - (1. - f) * s)
rgb = torch.cat([hi, hi, hi], -1) % 6
rgb[rgb == 0] = torch.cat((v, t, p), -1)[rgb == 0]
rgb[rgb == 1] = torch.cat((q, v, p), -1)[rgb == 1]
rgb[rgb == 2] = torch.cat((p, v, t), -1)[rgb == 2]
rgb[rgb == 3] = torch.cat((p, q, v), -1)[rgb == 3]
rgb[rgb == 4] = torch.cat((t, p, v), -1)[rgb == 4]
rgb[rgb == 5] = torch.cat((v, p, q), -1)[rgb == 5]
return rgb
# Ray helpers
def get_rays(H, W, focal, c2w, ray_jitter=False):
i, j = torch.meshgrid(torch.linspace(0, W-1, W)+0.5, torch.linspace(0, H-1, H)+0.5) # pytorch's meshgrid has indexing='ij'
i = i.t()
j = j.t()
if ray_jitter:
i += torch.rand_like(i) - 0.5
j += torch.rand_like(j) - 0.5
dirs = torch.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -torch.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3,-1].expand(rays_d.shape)
return rays_o, rays_d
def get_batched_rays(H, W, focal, c2w, x, y, ray_jitter=False):
x = x.type(torch.float32) + 0.5
y = y.type(torch.float32) + 0.5
if ray_jitter:
x += torch.rand_like(x) - 0.5
y += torch.rand_like(y) - 0.5
dirs = torch.stack([(x-W*.5)/focal, -(y-H*.5)/focal, -torch.ones_like(x)], -1)
rays_d = c2w[..., :3, :3] @ dirs.reshape(-1, 3, 1)
rays_o = c2w[..., :3, -1]
return rays_o, rays_d.squeeze()
def get_rays_np(H, W, focal, c2w):
i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
dirs = np.stack([(i-W*.5)/focal, -(j-H*.5)/focal, -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
return rays_o, rays_d
def ndc_rays(H, W, focal, near, rays_o, rays_d):
# Shift ray origins to near plane
t = -(near + rays_o[...,2]) / rays_d[...,2]
rays_o = rays_o + t[...,None] * rays_d
# Projection
o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]
o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]
o2 = 1. + 2. * near / rays_o[...,2]
d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])
d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])
d2 = -2. * near / rays_o[...,2]
rays_o = torch.stack([o0,o1,o2], -1)
rays_d = torch.stack([d0,d1,d2], -1)
return rays_o, rays_d
# Hierarchical sampling (section 5.2)
def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[...,:1]), cdf], -1) # (batch, len(bins))
# Take uniform samples
if det:
u = torch.linspace(0., 1., steps=N_samples)
u = u.expand(list(cdf.shape[:-1]) + [N_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [N_samples])
# Pytest, overwrite u with numpy's fixed random numbers
if pytest:
np.random.seed(0)
new_shape = list(cdf.shape[:-1]) + [N_samples]
if det:
u = np.linspace(0., 1., N_samples)
u = np.broadcast_to(u, new_shape)
else:
u = np.random.rand(*new_shape)
u = torch.Tensor(u)
# Invert CDF
u = u.contiguous()
inds = searchsorted(cdf, u, right=True)# side='right')
below = torch.max(torch.zeros_like(inds-1), inds-1)
above = torch.min((cdf.shape[-1]-1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
# cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
# bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[...,1]-cdf_g[...,0])
denom = torch.where(denom<1e-5, torch.ones_like(denom), denom)
t = (u-cdf_g[...,0])/denom
samples = bins_g[...,0] + t * (bins_g[...,1]-bins_g[...,0])
return samples