Skip to content

A study to find a suitable temporal-based embedding model in detecting IoT malware through network analysis

License

Notifications You must be signed in to change notification settings

anisyusof-sc/kg-cs6216

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 

Repository files navigation

Preemptive Anomaly Detection of IoT Network on Knowledge Graph

Source File Location

  • GitHub code repository - link
  • code & binary files - link

Using Ampligraph

for non-temporal models

  1. Follow the instruction here to install Ampligraph
  2. Run one of the model code in /ampligraph/ampligraph_*.py

Example:

$: conda activate ampligraph
$: python3 ampligraph_TransE.py

Using Horovod

for both TA-based & DE-based models

  1. Follow the instructions here to install Horovod
  2. Follow the instructions here to install the TKGC codes
  3. Run one of the TKGC models

Example:

$: horovodrun -np 2 -H localhost:2 python -BW ignore main.py --dataset deNetwork3_1 --model TTransE --dropout 0.2 --embedding-size 8 --learning-rate 0.01 --epochs 100 --batch-size 32 --test-batch-size 30 --negative-samples 64 --filter --mode head --validation-frequency 2 --threads 2 --workers 1

Summary of Horovod & TKGC installation:

conda create -n horovod python=3.6
conda install -y openmpi
conda install -y -c cmake
conda install -y -c pytorch pytorch
conda install -y gxx_linux-64
HOROVOD_WITH_PYTORCH=1 pip install -v --no-cache-dir horovod[pytorch]
pip install -r requirements.txt

Converting raw network logs to CSV

  1. Amend the converter/main.py to use the appropriate dataset converter

Example:

from preprocessing.log2dataset_tkgc
#from preprocessing.log2dataset_tkgcTA
#from preprocessing.log2dataset
  1. Place the raw network log dataset conn.log.labeled that is to be converted
  2. Run the script converter/main.py to generate output.csv

Import into Neo4j

converting the immediate representation to knowledge graph

  1. Install Neo4j and create a graph database
  2. Place the output.csv in the database import folder
  3. Run the following cypher command:
LOAD CSV FROM "file:///output.csv" as row

CALL apoc.merge.node(['uid'], {id:row[0]}, {})
YIELD node as startNode
CALL apoc.merge.node([row[1]], {id:row[2]}, {})
YIELD node as endNode
CALL apoc.create.relationship(startNode, row[1], {id:row[1]}, endNode) yield rel
RETURN distinct 'done'

Experiment Results

The experiment results for both temporal (Horovod/TKGC) and non-temporal (Ampligraph) models are collated in the results folder

About

A study to find a suitable temporal-based embedding model in detecting IoT malware through network analysis

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published