-
Notifications
You must be signed in to change notification settings - Fork 0
/
DisjSets.java
94 lines (84 loc) · 2.35 KB
/
DisjSets.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
package com.dsa.project4;
//DisjSets class
//
//CONSTRUCTION: with int representing initial number of sets
//
//******************PUBLIC OPERATIONS*********************
//void union( root1, root2 ) --> Merge two sets
//int find( x ) --> Return set containing x
//******************ERRORS********************************
//No error checking is performed
/**
* Disjoint set class, using union by rank and path compression.
* Elements in the set are numbered starting at 0.
* @author Mark Allen Weiss
*/
public class DisjSets
{
/**
* Construct the disjoint sets object.
* @param numElements the initial number of disjoint sets.
*/
public DisjSets( int numElements )
{
s = new int [ numElements ];
for( int i = 0; i < s.length; i++ )
s[ i ] = -1;
}
/**
* Union two disjoint sets using the height heuristic.
* For simplicity, we assume root1 and root2 are distinct
* and represent set names.
* @param root1 the root of set 1.
* @param root2 the root of set 2.
*/
public void union( int root1, int root2 )
{
if( s[ root2 ] < s[ root1 ] ) // root2 is deeper
s[ root1 ] = root2; // Make root2 new root
else
{
if( s[ root1 ] == s[ root2 ] )
s[ root1 ]--; // Update height if same
s[ root2 ] = root1; // Make root1 new root
}
}
/**
* Perform a find with path compression.
* Error checks omitted again for simplicity.
* @param x the element being searched for.
* @return the set containing x.
*/
public int find( int x )
{
if( s[ x ] < 0 )
return x;
else
return s[ x ] = find( s[ x ] );
}
private int [ ] s;
// Test main; all finds on same output line should be identical
public static void main( String [ ] args )
{
int NumElements = 128;
int NumInSameSet = 16;
DisjSets ds = new DisjSets( NumElements );
int set1, set2;
for( int k = 1; k < NumInSameSet; k *= 2 )
{
for( int j = 0; j + k < NumElements; j += 2 * k )
{
set1 = ds.find( j );
set2 = ds.find( j + k );
ds.union( set1, set2 );
}
}
for( int i = 0; i < NumElements; i++ )
{
System.out.print( ds.find( i )+ "*" );
if( i % NumInSameSet == NumInSameSet - 1 )
System.out.println( );
}
System.out.println( );
}
}