forked from someone42/hardware-bitcoin-wallet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sha256.c
346 lines (320 loc) · 8.48 KB
/
sha256.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/** \file sha256.c
*
* \brief Calculates SHA-256 hashes.
*
* The code here is based on formulae and pseudo-code in FIPS PUB 180-3.
*
* This file is licensed as described by the file LICENCE.
*/
#ifdef TEST_SHA256
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "test_helpers.h"
#endif // #ifdef TEST_SHA256
#include "common.h"
#include "hash.h"
#include "sha256.h"
/** Constants for SHA-256. See section 4.2.2 of FIPS PUB 180-3. */
static const uint32_t k[64] PROGMEM = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2};
/** Rotate right.
* \param x The integer to rotate right.
* \param n Number of times to rotate right.
* \return The rotated integer.
*/
static uint32_t rotateRight(uint32_t x, uint8_t n)
{
return (x >> n) | (x << (32 - n));
}
/** Function defined as (4.2) in section 4.1.2 of FIPS PUB 180-3.
* \param x First input integer.
* \param y Second input integer.
* \param z Third input integer.
* \return Non-linear combination of x, y and z.
*/
static uint32_t ch(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) ^ ((~x) & z);
}
/** Function defined as (4.3) in section 4.1.2 of FIPS PUB 180-3.
* \param x First input integer.
* \param y Second input integer.
* \param z Third input integer.
* \return Non-linear combination of x, y and z.
*/
static uint32_t maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) ^ (x & z) ^ (y & z);
}
/** Function defined as (4.4) in section 4.1.2 of FIPS PUB 180-3.
* \param x Input integer.
* \return Transformed integer.
*/
static uint32_t bigSigma0(uint32_t x)
{
return rotateRight(x, 2) ^ rotateRight(x, 13) ^ rotateRight(x, 22);
}
/** Function defined as (4.5) in section 4.1.2 of FIPS PUB 180-3.
* \param x Input integer.
* \return Transformed integer.
*/
static uint32_t bigSigma1(uint32_t x)
{
return rotateRight(x, 6) ^ rotateRight(x, 11) ^ rotateRight(x, 25);
}
/** Function defined as (4.6) in section 4.1.2 of FIPS PUB 180-3.
* \param x Input integer.
* \return Transformed integer.
*/
static uint32_t littleSigma0(uint32_t x)
{
return rotateRight(x, 7) ^ rotateRight(x, 18) ^ (x >> 3);
}
/** Function defined as (4.7) in section 4.1.2 of FIPS PUB 180-3.
* \param x Input integer.
* \return Transformed integer.
*/
static uint32_t littleSigma1(uint32_t x)
{
return rotateRight(x, 17) ^ rotateRight(x, 19) ^ (x >> 10);
}
/** Update hash value based on the contents of a full message buffer.
* This is an implementation of HashState#hashBlock().
* This implements the pseudo-code in section 6.2.2 of FIPS PUB 180-3.
* \param hs The hash state to update.
*/
static void sha256Block(HashState *hs)
{
uint32_t a, b, c, d, e, f, g, h;
uint32_t t1, t2;
uint8_t t;
uint32_t w[64];
for (t = 0; t < 16; t++)
{
w[t] = hs->m[t];
}
for (t = 16; t < 64; t++)
{
w[t] = littleSigma1(w[t - 2]) + w[t - 7] + littleSigma0(w[t - 15]) + w[t - 16];
}
a = hs->h[0];
b = hs->h[1];
c = hs->h[2];
d = hs->h[3];
e = hs->h[4];
f = hs->h[5];
g = hs->h[6];
h = hs->h[7];
for (t = 0; t < 64; t++)
{
t1 = h + bigSigma1(e) + ch(e, f, g) + LOOKUP_DWORD(k[t]) + w[t];
t2 = bigSigma0(a) + maj(a, b, c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
hs->h[0] += a;
hs->h[1] += b;
hs->h[2] += c;
hs->h[3] += d;
hs->h[4] += e;
hs->h[5] += f;
hs->h[6] += g;
hs->h[7] += h;
}
/** Begin calculating hash for new message.
* See section 5.3.3 of FIPS PUB 180-3.
* \param hs The hash state to initialise.
*/
void sha256Begin(HashState *hs)
{
hs->message_length = 0;
hs->hashBlock = sha256Block;
hs->is_big_endian = true;
hs->h[0] = 0x6a09e667;
hs->h[1] = 0xbb67ae85;
hs->h[2] = 0x3c6ef372;
hs->h[3] = 0xa54ff53a;
hs->h[4] = 0x510e527f;
hs->h[5] = 0x9b05688c;
hs->h[6] = 0x1f83d9ab;
hs->h[7] = 0x5be0cd19;
clearM(hs);
}
/** Add one more byte to the message buffer and call sha256Block()
* if the message buffer is full.
* \param hs The hash state to act on. The hash state must be one that has
* been initialised using sha256Begin() at some time in the past.
* \param byte The byte to add.
*/
void sha256WriteByte(HashState *hs, uint8_t byte)
{
hashWriteByte(hs, byte);
}
/** Finalise the hashing of a message by writing appropriate padding and
* length bytes.
* \param hs The hash state to act on. The hash state must be one that has
* been initialised using sha256Begin() at some time in the past.
*/
void sha256Finish(HashState *hs)
{
hashFinish(hs);
}
/** Just like sha256Finish(), except this does a double SHA-256 hash. A
* double SHA-256 hash is sometimes used in the Bitcoin protocol.
* \param hs The hash state to act on. The hash state must be one that has
* been initialised using sha256Begin() at some time in the past.
*/
void sha256FinishDouble(HashState *hs)
{
uint8_t temp[32];
uint8_t i;
sha256Finish(hs);
writeHashToByteArray(temp, hs, true);
sha256Begin(hs);
for (i = 0; i < 32; i++)
{
sha256WriteByte(hs, temp[i]);
}
sha256Finish(hs);
}
#ifdef TEST_SHA256
/** Where hash value will be stored after sha256() returns. */
static uint32_t h[8];
/** Calculate SHA-256 hash of a message. The result is returned in #h.
* \param message The message to calculate the hash of. This must be a byte
* array of the size specified by length.
* \param length The length (in bytes) of the message.
*/
static void sha256(uint8_t *message, uint32_t length)
{
uint32_t i;
HashState hs;
sha256Begin(&hs);
for (i = 0; i < length; i++)
{
sha256WriteByte(&hs, message[i]);
}
sha256Finish(&hs);
memcpy(h, hs.h, 32);
}
/** Run unit tests using test vectors from a file. The file is expected to be
* in the same format as the NIST "SHA Test Vectors for Hashing Byte-Oriented
* Messages", which can be obtained from:
* http://csrc.nist.gov/groups/STM/cavp/index.html#03
* \param filename The name of the file containing the test vectors.
*/
static void scanTestVectors(char *filename)
{
FILE *f;
unsigned int length;
unsigned int bytes_to_read;
unsigned int i;
int value;
int test_number;
uint32_t compare_h[8];
char buffer[16];
uint8_t *message;
f = fopen(filename, "r");
if (f == NULL)
{
printf("Could not open %s, please get it \
(Byte-Oriented test vectors) from \
http://csrc.nist.gov/groups/STM/cavp/index.html#03", filename);
exit(1);
}
test_number = 1;
for (i = 0; i < 7; i++)
{
skipLine(f);
}
while (!feof(f))
{
// Get length of message.
if (!fscanf(f, "Len = %u", &length))
{
printf("fscanf error when reading length\n");
exit(1);
}
length = length >> 3;
bytes_to_read = length;
if (bytes_to_read == 0)
{
// Special case: for empty message, the message is still listed
// as "Msg = 00".
bytes_to_read = 1;
}
skipWhiteSpace(f);
// Get message itself.
fgets(buffer, 7, f);
if (strcmp(buffer, "Msg = "))
{
printf("Parse error; expected \"Msg = \"\n");
exit(1);
}
message = malloc(bytes_to_read);
for (i = 0; i < bytes_to_read; i++)
{
fscanf(f, "%02x", &value);
message[i] = (uint8_t)value;
}
skipWhiteSpace(f);
sha256(message, length);
free(message);
// Get expected message digest.
fgets(buffer, 6, f);
if (strcmp(buffer, "MD = "))
{
printf("Parse error; expected \"MD = \"\n");
exit(1);
}
for (i = 0; i < 8; i++)
{
fscanf(f, "%08x", &value);
compare_h[i] = (uint32_t)value;
}
skipWhiteSpace(f);
if (!memcmp(h, compare_h, 32))
{
//printf("%08x%08x%08x%08x%08x%08x%08x%08x\n", h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7]);
reportSuccess();
}
else
{
printf("Test number %d (Len = %u) failed\n", test_number, length << 3);
reportFailure();
}
test_number++;
}
fclose(f);
}
int main(void)
{
initTests(__FILE__);
scanTestVectors("SHA256ShortMsg.rsp");
scanTestVectors("SHA256LongMsg.rsp");
finishTests();
exit(0);
}
#endif // #ifdef TEST_SHA256