forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_foreach.py
672 lines (602 loc) · 33.5 KB
/
test_foreach.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
# Owner(s): ["module: mta"]
import itertools
from numbers import Number
import random
import re
import torch
import unittest
from torch.testing import make_tensor
from torch.testing._comparison import default_tolerances
from torch.testing._internal.common_utils import TestCase, run_tests, TEST_WITH_ROCM, TEST_WITH_SLOW
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, onlyCUDA, skipMeta, ops)
from torch.testing._internal.common_methods_invocations import (
foreach_unary_op_db, foreach_binary_op_db, foreach_pointwise_op_db, foreach_minmax_op_db,
foreach_reduce_op_db)
from torch.testing._internal.common_dtype import (
all_types_and_complex_and, all_types_and, integral_types, complex_types,
floating_types_and, floating_types, integral_types_and,
)
# Includes some values such that N * N won't be a multiple of 4,
# which should ensure we test the vectorized and non-vectorized
# kernel code paths.
N_values = [20, 23] if not TEST_WITH_SLOW else [23, 30, 300]
Scalars = (
random.randint(1, 10),
1.0 - random.random(),
True,
complex(1.0 - random.random(), 1.0 - random.random()),
)
def getScalarLists(N):
return (
("int", [random.randint(0, 9) + 1 for _ in range(N)]),
("float", [1.0 - random.random() for _ in range(N)]),
("complex", [complex(1.0 - random.random(), 1.0 - random.random()) for _ in range(N)]),
("bool", [True for _ in range(N)]),
("mixed", [1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(N - 3)]),
("mixed", [True, 1, 2.0, 3.0 + 4.5j] + [3.0 for _ in range(N - 4)]),
)
_BOOL_SUB_ERR_MSG = "Subtraction, the `-` operator"
class RegularFuncWrapper:
def __init__(self, func):
self.func = func
def __call__(self, inputs, values=None, **kwargs):
if values is not None:
assert len(inputs) == 3
if isinstance(values, Number):
values = [values for _ in range(len(inputs[0]))]
return [self.func(*i, value=values[idx], **kwargs) for idx, i in enumerate(zip(*inputs))]
if len(inputs) == 2 and isinstance(inputs[1], Number):
# binary op with tensorlist and scalar.
inputs[1] = [inputs[1] for _ in range(len(inputs[0]))]
return [self.func(*i, **kwargs) for i in zip(*inputs)]
class ForeachFuncWrapper:
def __init__(self, func, n_expected_cudaLaunchKernels):
self.func = func
self.n_expected_cudaLaunchKernels = n_expected_cudaLaunchKernels
# Some foreach functions don't have in-place implementations.
self._is_inplace = False if func is None else func.__name__.endswith('_')
def __call__(self, inputs, is_cuda, is_fastpath, **kwargs):
actual = None
if (
is_cuda and
torch.autograd.kineto_available() and
torch.profiler.ProfilerActivity.CUDA in torch.profiler.supported_activities()
):
with torch.profiler.profile(activities=(torch.profiler.ProfilerActivity.CPU,)) as p:
actual = self.func(*inputs, **kwargs)
for e in p.key_averages():
if e.key == 'cudaLaunchKernel':
if is_fastpath:
assert e.count == self.n_expected_cudaLaunchKernels
else:
assert e.count > self.n_expected_cudaLaunchKernels
else:
actual = self.func(*inputs, **kwargs)
# note(mkozuki): inplace foreach functions are void functions.
return inputs[0] if self._is_inplace else actual
class TestForeach(TestCase):
@property
def is_cuda(self):
return self.device_type == 'cuda'
# note(mkozuki): It might be the case that the expected number of `cudaLaunchKernel`s
# is greater than 1 once foreach functions internally separate their input `TensorList`s by
# devices & dtypes into vectors of tensors.
def _get_funcs(self, op, n_expected_cudaLaunchKernels):
return (
ForeachFuncWrapper(op.method_variant, n_expected_cudaLaunchKernels),
RegularFuncWrapper(op.ref),
ForeachFuncWrapper(op.inplace_variant, n_expected_cudaLaunchKernels),
RegularFuncWrapper(op.ref_inplace),
)
def _binary_test(self, dtype, op, ref, inputs, is_fastpath, is_inplace, *, alpha=None):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1]] if is_inplace else inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs)
else:
expected = ref(ref_inputs)
self.assertEqual(actual, expected)
if alpha is not None:
kwargs = {'alpha': alpha}
ref_inputs = inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath, **kwargs)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, **kwargs)
else:
expected = ref(ref_inputs, **kwargs)
if dtype in (torch.float16, torch.bfloat16) and TEST_WITH_ROCM:
self.assertEqual(expected, actual, atol=1.e-3, rtol=default_tolerances(dtype)[0])
else:
self.assertEqual(expected, actual)
def _test_binary_op_tensorlists(self, device, dtype, opinfo, N, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
if opinfo.supports_alpha_param:
alpha = None
if dtype in integral_types():
alpha = 3
elif dtype.is_complex:
alpha = complex(3, 3)
else:
alpha = 3.14
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False, alpha=alpha)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True, alpha=alpha)
# Tests of implicit broadcasting
# When sizes of tensors don't match, foreach functions are supposed to choose slow path
# even if this methods's argument `is_fastpath` is True.
# `cudaLaunchKernel` will be equal to `N`. For assert in `ForeachFuncWrapper` to pass,
# we pass `is_fastpath and disable_fastpath` to `_binary_test`'s argument of is_fastpath.
# as n_expected_cudaLaunchKernels is N if disable_fastpath.
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
[
make_tensor((N - i , 1), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
]
self._binary_test(dtype, op, ref, inputs, is_fastpath and disable_fastpath, is_inplace=False)
self._binary_test(
dtype, inplace_op, inplace_ref, inputs, is_fastpath and disable_fastpath, is_inplace=True)
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_tensorlists_fastpath(self, device, dtype, op):
for N in N_values:
disable_fastpath = op.ref == torch.div and dtype in integral_types_and(torch.bool)
if op.ref == torch.add and dtype == torch.bool:
disable_fastpath = True
self._test_binary_op_tensorlists(device, dtype, op, N, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_tensorlists_slowpath(self, device, dtype, op):
for N in N_values:
self._test_binary_op_tensorlists(device, dtype, op, N, False, False)
def _test_binary_op_scalar(self, device, dtype, opinfo, N, scalar, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath), scalar]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_scalar_fastpath(self, device, dtype, op):
for N, scalar in itertools.product(N_values, Scalars):
disable_fastpath = op.ref == torch.div and dtype in integral_types_and(torch.bool)
if isinstance(scalar, int):
disable_fastpath |= dtype == torch.bool
if isinstance(scalar, float):
disable_fastpath |= dtype in integral_types_and(torch.bool)
if isinstance(scalar, bool):
disable_fastpath |= dtype == torch.bool
if op.ref in (torch.add, torch.mul):
disable_fastpath = False
if isinstance(scalar, complex):
disable_fastpath |= dtype not in complex_types()
self._test_binary_op_scalar(device, dtype, op, N, scalar, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_scalar_slowpath(self, device, dtype, op):
for N, scalar in itertools.product(N_values, Scalars):
self._test_binary_op_scalar(device, dtype, op, N, scalar, False, False)
def _test_binary_op_scalarlist(self, device, dtype, opinfo, N, scalarlist, is_fastpath, disable_fastpath):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath), scalarlist]
self._binary_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False)
self._binary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True)
# note(mkozuki): Why two functions depending on with/without bool?
# `foreach_sub` & `foreach_sub_` do `sub_check(tensors[i], scalars[i])` from i=1...N.
# So, if scalarlist has one or more bool values, `foreach_sub` and `foreach_sub_`
# raise bool subtraction error before doing any math.
# While regular `sub` and `sub_` do some math until they encounter bool.
# So, foreach sub's throw bool sub error first. However, regular sub's throw different
# errors depending on the order of scalarlist. To keep actual unit test impl simple,
# separating mixed scalarlist tests. By setting the first element of scalarlist to bool,
# they are expected to throw bool sub error even in inplace test.
@skipMeta
@ops(foreach_binary_op_db)
def test_binary_op_scalarlist_fastpath(self, device, dtype, op):
for N in N_values:
for type_str, scalarlist in getScalarLists(N):
bool_int_div = op.ref == torch.div and dtype in integral_types_and(torch.bool)
disable_fastpath = bool_int_div
if type_str == "int":
disable_fastpath |= dtype == torch.bool
if type_str == "float":
disable_fastpath |= dtype in integral_types_and(torch.bool)
if type_str == "complex":
disable_fastpath |= dtype not in complex_types()
if type_str == "mixed":
disable_fastpath |= True and dtype not in complex_types()
self._test_binary_op_scalarlist(device, dtype, op, N, scalarlist, True, disable_fastpath)
@ops(foreach_binary_op_db)
def test_binary_op_scalarlist_slowpath(self, device, dtype, op):
for N in N_values:
for _, scalarlist in getScalarLists(N):
self._test_binary_op_scalarlist(device, dtype, op, N, scalarlist, False, False)
def _pointwise_test(self, dtype, op, ref, inputs, is_fastpath, is_inplace, *, values=None):
ref_inputs = [[t.clone().detach() for t in inputs[0]], inputs[1], inputs[2]] if is_inplace else inputs
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs)
else:
expected = ref(ref_inputs)
self.assertEqual(expected, actual)
if values is not None:
try:
actual = op(inputs + [values], self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(ref_inputs, values=values)
else:
expected = ref(ref_inputs, values=values)
self.assertEqual(expected, actual)
def _test_pointwise_op(self, device, dtype, opinfo, N, is_fastpath, disable_fastpath, *, values=None):
n_expected_cudaLaunchKernels = N if disable_fastpath else 1
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
]
self._pointwise_test(dtype, op, ref, inputs, is_fastpath, is_inplace=False, values=values)
self._pointwise_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath, is_inplace=True, values=values)
# Tests of implicit broadcasting
inputs = [
opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath, same_size=True),
[
make_tensor((N - i, 1), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
[
make_tensor((1, N - i), device=device, dtype=dtype, noncontiguous=not is_fastpath) for i in range(N)
],
]
self._pointwise_test(dtype, op, ref, inputs, is_fastpath and disable_fastpath, is_inplace=False, values=values)
self._pointwise_test(
dtype, inplace_op, inplace_ref, inputs, is_fastpath and disable_fastpath, is_inplace=True, values=values)
@skipMeta
@ops(foreach_pointwise_op_db)
def test_pointwise_op_fastpath(self, device, dtype, op):
disable_fastpath = dtype in integral_types_and(torch.bool)
# for N, scalar in itertools.product(N_values, Scalars):
for N in N_values:
self._test_pointwise_op(device, dtype, op, N, True, disable_fastpath)
for scalar in Scalars:
self._test_pointwise_op(device, dtype, op, N, True, disable_fastpath, values=scalar)
for _, scalarlist in getScalarLists(N):
self._test_pointwise_op(
device, dtype, op, N, True, disable_fastpath, values=scalarlist)
@ops(foreach_pointwise_op_db)
def test_pointwise_op_slowpath(self, device, dtype, op):
# for N, scalar in itertools.product(N_values, Scalars):
for N in N_values:
self._test_pointwise_op(device, dtype, op, N, False, False)
for scalar in Scalars:
self._test_pointwise_op(device, dtype, op, N, False, False, values=scalar)
for _, scalarlist in getScalarLists(N):
self._test_pointwise_op(
device, dtype, op, N, False, False, values=scalarlist)
# note(mkozuki): fastpath test uses dtypes which fastpath implementation supports.
# To confirm the dtypes of `OpInfo` cover the dtypes that the function support,
# this test does not use `try-except` for fastpath.
def _regular_unary_test(self, dtype, op, ref, inputs, is_fastpath):
if is_fastpath:
self.assertEqual(ref(inputs), op(inputs, self.is_cuda, is_fastpath))
return
try:
actual = op(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
ref(inputs)
else:
expected = ref(inputs)
self.assertEqual(actual, expected)
# note(mkozuki): why `try-except` for both fastpath?
# - inputs for fastpath can be integer tensors.
# - this is becase opinfo dtypes are configured for outpulace implementation
# - for integer inputs, trigonometric functions and exponential function returns float outputs,
# which causes "result type Float can't be case to the desired type" error.
# Thus, `try-except` is used even if `is_fastpath` is `True`.
def _inplace_unary_test(self, dtype, inplace, inplace_ref, inputs, is_fastpath):
copied_inputs = [[t.clone().detach() for t in tensors] for tensors in inputs]
try:
inplace(inputs, self.is_cuda, is_fastpath)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
inplace_ref(copied_inputs)
else:
inplace_ref(copied_inputs),
self.assertEqual(copied_inputs, inputs)
def _test_unary(self, device, dtype, opinfo, N, is_fastpath):
op, ref, inplace_op, inplace_ref = self._get_funcs(opinfo, 1)
inputs = opinfo.sample_inputs(device, dtype, N, noncontiguous=not is_fastpath),
# note(mkozuki): Complex inputs for `_foreach_abs` go through slowpath.
if opinfo.name == "_foreach_abs" and dtype in complex_types():
is_fastpath = False
self._regular_unary_test(dtype, op, ref, inputs, is_fastpath)
self._inplace_unary_test(dtype, inplace_op, inplace_ref, inputs, is_fastpath)
@skipMeta
@ops(foreach_unary_op_db)
def test_unary_fastpath(self, device, dtype, op):
for N in N_values:
self._test_unary(device, dtype, op, N, is_fastpath=True)
@ops(foreach_unary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_unary_slowpath(self, device, dtype, op):
for N in N_values:
self._test_unary(device, dtype, op, N, is_fastpath=False)
def _minmax_test(self, opinfo, inputs, is_fastpath, n_expected_cudaLaunchKernels):
op, ref, _, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
self.assertEqual(ref(inputs), op(inputs, self.is_cuda, is_fastpath))
# note(mkozuki): in-place of foreach_minimum and foreach_maximum aren't implemented.
@ops(foreach_minmax_op_db)
def test_minmax_fastpath(self, device, dtype, op):
for N in N_values:
inputs = tuple(op.sample_inputs(device, dtype, N) for _ in range(2))
self._minmax_test(op, inputs, True, N if dtype == torch.bool else 1)
@ops(foreach_minmax_op_db,
dtypes=all_types_and(torch.half, torch.bfloat16, torch.bool))
def test_minmax_slowpath(self, device, dtype, op):
for N in N_values:
inputs = tuple(op.sample_inputs(device, dtype, N, noncontiguous=True) for _ in range(2))
self._minmax_test(op, inputs, False, 1)
# note(mkozuki): ForeachFuncInfo's of both `_foreach_maximum` and `_foreach_minimum` include integer types.
# so, manually limit dtypes to fp types for inf&nan tests.
@ops(foreach_minmax_op_db, dtypes=floating_types_and(torch.half, torch.bfloat16))
def test_minmax_float_inf_nan(self, device, dtype, op):
inputs = (
[
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
],
[
torch.tensor([-float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('inf')], device=device, dtype=dtype),
torch.tensor([float('nan')], device=device, dtype=dtype)
],
)
self._minmax_test(op, inputs, True, 1)
def _reduce_test(self, opinfo, inputs, ord, is_fastpath, n_expected_cudaLaunchKernels):
op, ref, _, _ = self._get_funcs(opinfo, n_expected_cudaLaunchKernels)
self.assertEqual(ref(inputs, ord=ord), op(inputs, self.is_cuda, is_fastpath, ord=ord))
@ops(foreach_reduce_op_db)
def test_reduce_fastpath(self, device, dtype, op):
for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
if ord in (1, 2) and dtype in floating_types_and(torch.half, torch.bfloat16):
n_expected_cudaLaunchKernels = 3
else:
n_expected_cudaLaunchKernels = N
inputs = op.sample_inputs(device, dtype, N, noncontiguous=False),
self._reduce_test(op, inputs, ord, True, n_expected_cudaLaunchKernels)
@ops(foreach_reduce_op_db)
def test_reduce_slowpath(self, device, dtype, op):
for N, ord in itertools.product(N_values, (0, 1, 2, -1, -2)):
inputs = op.sample_inputs(device, dtype, N, noncontiguous=True),
self._reduce_test(op, inputs, ord, False, 1)
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_add_scalar_with_empty_list_and_empty_tensor(self, device, dtype):
# TODO: enable empty list case
for tensors in [[torch.randn([0])]]:
res = torch._foreach_add(tensors, 1)
self.assertEqual(res, tensors)
torch._foreach_add_(tensors, 1)
self.assertEqual(res, tensors)
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_scalar_with_overlapping_tensors(self, device, dtype, op):
foreach_op, ref = op.method_variant, op.ref
tensors = [torch.ones(1, 1, device=device, dtype=dtype).expand(2, 1, 3)]
if ref == torch.sub and dtype == torch.bool:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
[ref(t, 1) for t in tensors]
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op(tensors, 1)
return
expected = [ref(t, 1) for t in tensors]
res = foreach_op(tensors, 1)
self.assertEqual(res, expected)
# note(mkozuki): this test case fails with Meta at least in my local environment.
# The message was
# `AssertionError: NotImplementedError("Could not run 'aten::_foreach_add.Scalar' with arguments from the 'Meta' backend.`
@skipMeta
@ops(foreach_binary_op_db, allowed_dtypes=[torch.float])
def test_binary_op_scalar_with_different_tensor_dtypes(self, device, dtype, op):
foreach_op = op.method_variant
tensors = [torch.tensor([1.1], dtype=torch.float, device=device),
torch.tensor([1], dtype=torch.long, device=device)]
runtime_error = None
try:
foreach_op(tensors, 1)
except RuntimeError as e:
runtime_error = e
self.assertIsNone(runtime_error)
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_list_error_cases(self, device, dtype, op):
foreach_op, foreach_op_, ref, ref_ = op.method_variant, op.inplace_variant, op.ref, op.ref_inplace
tensors1 = []
tensors2 = []
# Empty lists
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "There were no tensor arguments to this function"):
foreach_op_(tensors1, tensors2)
# One empty list
tensors1.append(torch.tensor([1], device=device, dtype=dtype))
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor list must have same number of elements as scalar list."):
foreach_op_(tensors1, tensors2)
# Lists have different amount of tensors
tensors2.append(torch.tensor([1], device=device))
tensors2.append(torch.tensor([1], device=device))
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
foreach_op(tensors1, tensors2)
with self.assertRaisesRegex(RuntimeError, "Tensor lists must have the same number of tensors, got 1 and 2"):
foreach_op_(tensors1, tensors2)
# Corresponding tensors with different sizes that aren't compatible with broadcast
# If sizes are different then foreach chooses slow path, thus error messages are expected
# to be the same as torch regular function.
tensors1 = [torch.zeros(10, 10, device=device, dtype=dtype) for _ in range(10)]
tensors2 = [torch.ones(11, 11, device=device, dtype=dtype) for _ in range(10)]
try:
foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[ref(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[ref_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
# different devices
if self.device_type == "cuda" and torch.cuda.device_count() > 1:
tensor1 = torch.zeros(10, 10, device="cuda:0", dtype=dtype)
tensor2 = torch.ones(10, 10, device="cuda:1", dtype=dtype)
if dtype == torch.bool and foreach_op == torch._foreach_sub:
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op([tensor1], [tensor2])
with self.assertRaisesRegex(RuntimeError, re.escape(_BOOL_SUB_ERR_MSG)):
foreach_op_([tensor1], [tensor2])
return
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
foreach_op([tensor1], [tensor2])
if dtype in integral_types_and(torch.bool) and foreach_op == torch._foreach_div:
with self.assertRaisesRegex(RuntimeError, "result type"):
foreach_op_([tensor1], [tensor2])
else:
with self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device"):
foreach_op_([tensor1], [tensor2])
@skipMeta
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not found")
@ops(foreach_binary_op_db, dtypes=all_types_and_complex_and(torch.half, torch.bfloat16, torch.bool))
def test_binary_op_list_slow_path(self, device, dtype, op):
# note(mkozuki): why `n_expected_cudaLaunchKernels=0`?
# In this test, foreach functions don't go through fast path,
# but as there is only one tensor in each list of tensors,
# `cudaLaunchKernel` is 1 so ForeachFuncWrapper internal assert fails.
foreach_op, native_op, foreach_op_, native_op_ = self._get_funcs(op, n_expected_cudaLaunchKernels=0)
# 0-strides
tensor1 = make_tensor((10, 10), dtype=dtype, device=device)
tensor2 = make_tensor((1,), device=device, dtype=dtype).expand_as(tensor1)
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# different strides
tensor1 = torch.zeros(10, 10, device=device, dtype=dtype)
tensor2 = torch.ones(10, 10, device=device, dtype=dtype)
inputs = ([tensor1], [tensor2.t()])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# non contiguous
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
tensor2 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype, noncontiguous=True)
self.assertFalse(tensor1.is_contiguous())
self.assertFalse(tensor2.is_contiguous())
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# sliced tensor
tensor1 = make_tensor((5, 2, 1, 3), device=device, dtype=dtype)
tensor2 = make_tensor((5, 2, 1, 3 * 7), device=device, dtype=dtype)[:, :, :, ::7]
inputs = ([tensor1], [tensor2])
self._binary_test(dtype, foreach_op, native_op, inputs, is_fastpath=False, is_inplace=False)
self._binary_test(dtype, foreach_op_, native_op_, inputs, is_fastpath=False, is_inplace=True)
# note: Below three tests (postfixed with `_tensors_on_different_devices`)
# checks whether foreach works with lists of tensors on different devices
# but tensors of the same index are on the same device, e.g., ['cuda', 'cpu].
@onlyCUDA
@ops(foreach_unary_op_db)
def test_unary_op_tensors_on_different_devices(self, device, dtype, op):
method, ref, inplace_method, ref_inplace = self._get_funcs(op, 1)
# tensors: ['cuda', 'cpu]
tensors = op.sample_inputs(device, dtype, 2)
tensors[1] = tensors[1].to('cpu')
try:
actual = method((tensors,), False, False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e)):
ref((tensors,))
else:
expected = ref((tensors,))
self.assertEqual(expected, actual)
try:
inplace_method((tensors,), False, False)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), str(e)):
ref_inplace((tensors,))
else:
self.assertEqual(expected, tensors)
@onlyCUDA
@ops(foreach_binary_op_db)
def test_binary_op_tensors_on_different_devices(self, device, dtype, op):
# `tensors1`: ['cuda', 'cpu']
# `tensors2`: ['cuda', 'cpu']
_cuda_tensors = op.sample_inputs(device, dtype, 2, same_size=True)
_cpu_tensors = op.sample_inputs('cpu', dtype, 2, same_size=True)
tensors1, tensors2 = list(tensors for tensors in zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_ = op.method_variant, op.inplace_variant
native_op, native_op_ = op.ref, op.ref_inplace
try:
actual = foreach_op(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
expected = [native_op(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
self.assertEqual(expected, actual)
try:
foreach_op_(tensors1, tensors2)
except RuntimeError as e:
with self.assertRaisesRegex(type(e), re.escape(str(e))):
[native_op_(t1, t2) for t1, t2 in zip(tensors1, tensors2)]
else:
self.assertEqual(actual, tensors1)
@onlyCUDA
@ops(foreach_pointwise_op_db, allowed_dtypes=floating_types())
def test_pointwise_op_tensors_on_different_devices(self, device, dtype, op):
# tensors1: ['cuda', 'cpu]
# tensors2: ['cuda', 'cpu]
# tensors3: ['cuda', 'cpu]
_cuda_tensors = op.sample_inputs(device, dtype, 3, same_size=True)
_cpu_tensors = op.sample_inputs('cpu', dtype, 3, same_size=True)
tensors1, tensors2, tensors3 = list(tensors for tensors in zip(_cuda_tensors, _cpu_tensors))
foreach_op, foreach_op_, native_op = op.method_variant, op.inplace_variant, op.ref
actual = foreach_op(tensors1, tensors2, tensors3)
expected = [native_op(*_cuda_tensors), native_op(*_cpu_tensors)]
self.assertEqual(expected, actual)
# note(mkozuki): Limiting dtypes to FP32&FP64, we can safely run inplace ops.
foreach_op_(tensors1, tensors2, tensors3)
self.assertEqual(expected, tensors1)
# note: BFloat16 has the same number of exponent bits as FP32
# so if squared L2 norm overflows in BF16, then it also overflows in FP32.
@onlyCUDA
@ops(foreach_reduce_op_db, allowed_dtypes=(torch.half, torch.bfloat16))
def test_foreach_l2_large_value_input(self, device, dtype, op):
ord, N = 2, 10
max_value = torch.finfo(dtype).max
scaler = torch.tensor([max_value]).sqrt().to(device=device, dtype=dtype)
inputs = [t * scaler for t in op.sample_inputs(device, dtype, N, noncontiguous=False, low=1)],
# make sure that the min. of squared L2 norm value per tensor is greater than the max value of `dtype`.
self.assertTrue(scaler * scaler * N > max_value)
fn, ref_fn, *_ = self._get_funcs(op, 3)
actual = fn(inputs, is_cuda=True, is_fastpath=True, ord=ord)
expect = ref_fn(inputs, ord=ord)
if dtype == torch.float16:
# making sure the reference L2 norm values are in the range of FP16.
self.assertFalse(any(torch.isinf(e) for e in expect))
else:
self.assertTrue(all(torch.isinf(e) for e in expect))
self.assertEqual(expect, actual, equal_nan=False)
instantiate_device_type_tests(TestForeach, globals())
if __name__ == '__main__':
run_tests()