forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_meta.py
890 lines (815 loc) · 38.8 KB
/
test_meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
# Owner(s): ["module: primTorch"]
import torch
import os
from enum import Enum
from torch.overrides import resolve_name
from torch.utils._pytree import tree_map, tree_flatten
from torch._subclasses.meta_utils import MetaConverter
import torch.utils._python_dispatch
from torch.testing._internal.common_utils import (
TestCase,
skipIfCrossRef,
suppress_warnings,
TEST_WITH_ASAN,
run_tests,
)
from torch.testing._internal.common_device_type import (
ops,
instantiate_device_type_tests,
onlyCUDA,
)
from torch.testing._internal.common_methods_invocations import op_db
from torchgen.utils import YamlLoader
from torchgen.model import OperatorName
import sys
import yaml
import atexit
import re
from collections import defaultdict
import unittest
import warnings
import weakref
bf16 = torch.bfloat16
f64 = torch.float64
f32 = torch.float32
f16 = torch.float16
c32 = torch.complex32
c64 = torch.complex64
c128 = torch.complex128
i8 = torch.int8
i16 = torch.int16
i32 = torch.int32
i64 = torch.int64
b8 = torch.bool
u8 = torch.uint8
dtype_abbrs = {
torch.bfloat16: 'bf16',
torch.float64: 'f64',
torch.float32: 'f32',
torch.float16: 'f16',
torch.complex32: 'c32',
torch.complex64: 'c64',
torch.complex128: 'c128',
torch.int8: 'i8',
torch.int16: 'i16',
torch.int32: 'i32',
torch.int64: 'i64',
torch.bool: 'b8',
torch.uint8: 'u8',
}
class TestMetaConverter(TestCase):
def assertSameVersionCounter(self, m1, m2):
# Cannot easily test m1 and m2 have same storage due to
# lack of Storage bindings. Use version counter.
vc = m1._version
self.assertEqual(m2._version, vc)
# Doing it this way ensures that we get VC bump even with leaves
with torch.no_grad():
m1._base.add_(3)
self.assertNotEqual(m1._version, vc)
self.assertEqual(m2._version, m1._version)
def test_view_of_non_leaf(self):
x = torch.randn(4, requires_grad=True)
y = x.neg()
z1 = y[:]
z2 = y[:]
to_meta = MetaConverter()
m1 = to_meta(z1)
m2 = to_meta(z2)
self.assertEqual(m1.shape, z1.shape)
self.assertTrue(m1._is_view())
self.assertFalse(m1._base.is_leaf)
self.assertSameVersionCounter(m1, m2)
def test_view_of_leaf(self):
x = torch.randn(4, requires_grad=True)
z1 = x[:]
z2 = x[:]
to_meta = MetaConverter()
m1 = to_meta(z1)
m2 = to_meta(z2)
self.assertEqual(m1.shape, z1.shape)
self.assertTrue(m1._is_view())
self.assertTrue(m1._base.is_leaf)
self.assertSameVersionCounter(m1, m2)
def test_leaf(self):
x = torch.randn(4, requires_grad=True)
to_meta = MetaConverter()
m = to_meta(x)
self.assertEqual(m.shape, x.shape)
self.assertTrue(m.is_leaf)
self.assertTrue(m.requires_grad)
def test_non_leaf(self):
x = torch.randn(4, requires_grad=True)
y = x.neg()
to_meta = MetaConverter()
m = to_meta(y)
self.assertEqual(m.shape, y.shape)
self.assertFalse(m.is_leaf)
self.assertTrue(m.requires_grad)
def test_requires_grad_false(self):
x = torch.randn(4, requires_grad=False)
to_meta = MetaConverter()
m = to_meta(x)
self.assertEqual(m.shape, x.shape)
self.assertFalse(m.requires_grad)
# NB: complex stuff is not actually exercised right now because
# we have a blanket exclusion for complex conversion
def test_view_as_real(self):
x = torch.randn(4, dtype=torch.complex64)
y = torch.view_as_real(x)
m = MetaConverter()(y)
self.assertEqual(m.shape, y.shape)
self.assertEqual(m.stride(), y.stride())
self.assertEqual(m.dtype, y.dtype)
def test_complex_noncontiguous_bug(self):
x = torch.randn((2, 2, 4, 9), dtype=torch.complex32)[:, 0, :, :]
m = MetaConverter()(x)
self.assertEqual(m.shape, x.shape)
self.assertEqual(m.stride(), x.stride())
self.assertEqual(m.dtype, x.dtype)
def test_view_as_complex(self):
x = torch.randn((4, 2), dtype=torch.float32)
y = torch.view_as_complex(x)
m = MetaConverter()(y)
self.assertEqual(m.shape, y.shape)
self.assertEqual(m.stride(), y.stride())
self.assertEqual(m.dtype, y.dtype)
def test_view_dtype(self):
x = torch.randn(4, dtype=torch.float32)
y = x.view(dtype=torch.int32)
m = MetaConverter()(y)
self.assertEqual(m.shape, y.shape)
self.assertEqual(m.stride(), y.stride())
self.assertEqual(m.dtype, y.dtype)
def test_imag(self):
x = torch.randn(4, dtype=torch.complex64)
y = x.imag
m = MetaConverter()(y)
self.assertEqual(m.shape, y.shape)
self.assertEqual(m.dtype, y.dtype)
self.assertEqual(m.stride(), y.stride())
self.assertEqual(m.storage_offset(), y.storage_offset())
def test_weakref(self):
x = torch.randn(4, 4, 4)
m = MetaConverter()
y = m(x)
z = m(x)
self.assertIs(y, z)
self.assertEqual(len(m.tensor_memo), 1)
self.assertEqual(len(m.storage_memo), 1)
del x
self.assertEqual(len(m.tensor_memo), 0)
m.check_for_expired_weak_storages()
self.assertEqual(len(m.storage_memo), 0)
li = []
for i in range(4):
li.append(torch.rand([i]))
m(li[-1])
self.assertEqual(len(m.tensor_memo), 4)
del li
self.assertEqual(len(m.tensor_memo), 0)
m.check_for_expired_weak_storages()
self.assertEqual(len(m.storage_memo), 0)
def test_tensor_outlives_converter(self):
m = MetaConverter()
ref = weakref.ref(m)
x = torch.randn([4, 4])
y = m(x)
del m
self.assertIs(ref(), None)
def assert_ref_meta_equal(test_case, meta_rs, rs, msg_callable):
flat_meta_rs, _ = tree_flatten(meta_rs)
flat_rs, _ = tree_flatten(rs)
test_case.assertEqual(len(flat_meta_rs), len(flat_rs))
for i, meta_r, r in zip(range(len(flat_rs)), flat_meta_rs, flat_rs):
def test_assert(cond, msg):
if not cond:
raise RuntimeError(f"output {i}: {msg_callable(msg)}")
if not isinstance(r, torch.Tensor):
continue
test_assert(isinstance(meta_r, torch.Tensor), f"but real {i}th result is Tensor")
test_assert(meta_r.dtype == r.dtype, f"but real dtype was {r.dtype}")
test_assert(meta_r.shape == r.shape, f"but real shape was {r.shape}")
# NOTE: stride checking is currently disabled
# See https://github.com/pytorch/pytorch/issues/78050
# same_strides, _ = prims.utils.check_significant_strides(meta_r, r)
# test_assert(same_strides, f"but real stride was {r.stride()}")
test_assert(
meta_r.storage_offset() == r.storage_offset(),
f"but real storage_offset was {r.storage_offset()}")
test_assert(meta_r.requires_grad == r.requires_grad, f"but real requires_grad was {r.requires_grad}")
test_assert(meta_r.is_conj() == r.is_conj(), f"but real is_conj was {r.is_conj()}")
test_assert(meta_r.is_neg() == r.is_neg(), f"but real is_neg was {r.is_neg()}")
# This environment variable controls whether or not we print expected failure
# lists at the end of a test suite run. The intended usage looks like this:
#
# 1. Run `PYTORCH_COLLECT_EXPECT=1 python test/test_meta.py` on a CUDA build
# of PyTorch that has LAPACK/MAGMA installed. You can filter `-k test_meta`
# or `-k test_dispatch_meta` to only focus on one or another list
# 2. Given the printed skip/xfail list, add them to the corresponding lists;
# torch.* entries go in meta_function and aten.* entries go in meta_dispatch.
# If there are preexisting entries, you need to merge in the entries.
#
# This is somewhat manual but typically you shouldn't need to do this, unless
# you've made a major change (e.g., added a new dtype to PyTorch) and need to
# refresh the lists. If you want to do it from scratch, just clear out the
# preexisting lists before running.
#
# WARNING: Python dict literals will silently ignore duplicate keys
COLLECT_EXPECT = os.getenv('PYTORCH_COLLECT_EXPECT', '0') == '1'
seen_succeeded = {}
seen_failed = {}
failed_reasons = defaultdict(set)
def print_seen():
expected_failures = []
skips = []
def fmt_dtypes(dtypes):
r = ', '.join(sorted(dtype_abbrs[d] for d in dtypes))
return '{' + r + '}'
for op, failed_dtypes in seen_failed.items():
ops = resolve_name(op)
succeeded_dtypes = seen_succeeded.get(op, set())
expected_failures_dtypes = failed_dtypes - succeeded_dtypes
skips_dtypes = failed_dtypes & succeeded_dtypes
reasons = ""
if failed_reasons[op]:
reasons = " # " + ", ".join(sorted(failed_reasons[op]))
if expected_failures_dtypes:
expected_failures.append(f" {ops}: {fmt_dtypes(expected_failures_dtypes)},{reasons}")
if skips_dtypes:
skips.append(f" {ops}: {fmt_dtypes(skips_dtypes)},")
expected_failures.sort()
skips.sort()
nl = '\n'
print(f"""\
expected_failures = {{
{nl.join(expected_failures)}
}}
skips = {{
{nl.join(skips)}
}}
""")
if COLLECT_EXPECT:
atexit.register(print_seen)
# Success forces pass; failure forces fail; skip unconditionally skips testing
TestExpect = Enum("TestExpect", ("SUCCESS", "XFAILURE", "SKIP"))
# unlike print produce strides
def verbose_print(e):
class Lit:
def __init__(self, s):
self.s = s
def __repr__(self):
return self.s
def go(t):
if isinstance(t, torch.Tensor):
return Lit(f"{t} stride={t.stride()}")
else:
return t
return repr(tree_map(go, e))
def run_meta_crossref(
test_case,
test_expect,
func,
args,
kwargs,
*,
dtype,
device_type,
):
to_meta = MetaConverter()
do_meta = test_expect is not TestExpect.SKIP
if do_meta:
try:
meta_args = tree_map(to_meta, args)
meta_kwargs = tree_map(to_meta, kwargs)
except Exception as e:
raise RuntimeError(
f"failed to convert args to meta; "
f"originally (*{args}, **{kwargs})") from e
rs = func(*args, **kwargs)
# TODO: also handle cases where func raise an exception
# For now, only attempt if we managed to convert all tensor types
# (if any of them failed, we're in a mixed device situation and
# this isn't well supported)
if do_meta and to_meta.successful():
# Special cases
if func is torch.tensor_split:
# Use original indices_or_sections, this argument is data dependent
meta_args = (meta_args[0], args[1]) + meta_args[2:]
elif func is torch.ops.aten.repeat_interleave.Tensor:
if kwargs.get("output_size", None) is None:
meta_args = args
elif func is torch.ops.aten.index.Tensor:
# Don't convert boolean tensors to meta as they will have nonzero
# called on them
indices = []
for meta_index, real_index in zip(meta_args[1], args[1]):
if meta_index is not None and meta_index.dtype in [torch.int8, torch.bool]:
indices.append(real_index)
else:
indices.append(meta_index)
meta_args = (meta_args[0], indices)
try:
# Suppress warnings, this doesn't matter for test_meta.py
# but it does matter if you want to use this decorator
# for cross-ref testing, as some tests may be looking at
# errors
with warnings.catch_warnings():
warnings.simplefilter("ignore")
meta_rs = func(*meta_args, **meta_kwargs)
except Exception as e:
if test_expect is TestExpect.XFAILURE:
return rs
seen_failed.setdefault(func, set()).add(dtype)
if isinstance(e, NotImplementedError):
m = RE_NOT_IMPLEMENTED_MSG.search(e.args[0])
if m:
failed_reasons[func].add(m.group(1))
if COLLECT_EXPECT:
return rs
raise RuntimeError(f"""\
failed to run: {resolve_name(func)}(
*{verbose_print(meta_args)},
**{verbose_print(meta_kwargs)}
)""") from e
else:
try:
delim = ',\n '
assert_ref_meta_equal(test_case, meta_rs, rs, lambda msg: f"""\
meta disagrees with real impl:
{resolve_name(func)}(
{delim.join(map(verbose_print, meta_args))},
{delim.join(k + ": " + verbose_print(v) for k, v in meta_kwargs.items())}
) = (
{verbose_print(meta_rs)}
)
{msg}
""")
except Exception:
if test_expect is TestExpect.XFAILURE:
return rs
seen_failed.setdefault(func, set()).add(dtype)
if COLLECT_EXPECT:
return rs
raise
else:
seen_succeeded.setdefault(func, set()).add(dtype)
if test_expect is TestExpect.XFAILURE and not COLLECT_EXPECT:
raise RuntimeError(f"unexpected success {resolve_name(func)}")
return rs
RE_NOT_IMPLEMENTED_MSG = re.compile(r"Could not run '([^']+)' with arguments ")
meta_function_expected_failures = {
torch.Tensor.item: {b8, bf16, c128, c64, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::_local_scalar_dense
torch.Tensor.to_sparse: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::to_sparse, aten::to_sparse.sparse_dim
torch.allclose: {bf16, f16, f32, f64}, # aten::_local_scalar_dense
torch.argwhere: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::nonzero
torch.bincount: {i16, i32, i64, i8, u8}, # aten::bincount
torch.bucketize: {bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::bucketize.Tensor, aten::bucketize.Tensor_out
torch.combinations: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::masked_select
torch.complex: {f16, f32, f64}, # aten::complex.out
torch.corrcoef: {bf16, f32, f64, i16, i32, i64, i8, u8}, # aten::_local_scalar_dense
torch.count_nonzero: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::count_nonzero.dim_IntList
torch.cov: {bf16, f32, f64, i16, i32, i64, i8, u8}, # aten::_local_scalar_dense
torch.fft.hfft2: {b8, f32, f64, i16, i32, i64, i8, u8}, # aten::_fft_c2c
torch.fft.hfft: {b8, f32, f64, i16, i32, i64, i8, u8},
torch.fft.hfftn: {b8, f32, f64, i16, i32, i64, i8, u8}, # aten::_fft_c2c
torch.frexp: {bf16, f16, f32, f64}, # aten::frexp.Tensor_out
torch.functional.istft: {f32, f64}, # aten::view_as_complex
torch.functional.unique: {b8, bf16, f32, f64, i16, i32, i64, i8, u8}, # aten::_unique2, aten::unique_dim
torch.functional.unique_consecutive: {b8, bf16, f32, f64, i16, i32, i64, i8, u8}, # aten::unique_consecutive
torch.histc: {bf16, f32, f64}, # aten::histc, aten::histc.out
torch.histogram: {f32, f64}, # aten::histogram.bin_ct, aten::histogram.bins_tensor
torch.histogramdd: {f32, f64}, # aten::_histogramdd_bin_edges, aten::_histogramdd_from_bin_tensors
torch.kthvalue: {bf16, f32, f64, i16, i32, i64, i8, u8}, # aten::kthvalue.values
torch.logcumsumexp: {bf16, f32, f64}, # aten::_logcumsumexp, aten::_logcumsumexp.out
torch.masked_select: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::masked_select, aten::masked_select.out
torch.matrix_exp: {bf16, f32, f64}, # aten::linalg_matrix_exp
torch.median: {bf16, f32, f64, i16, i32, i64, i8, u8}, # aten::median, aten::median.dim_values
torch.mode: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::mode
torch.multinomial: {bf16, f32, f64}, # aten::multinomial, aten::multinomial.out
torch.mvlgamma: {bf16, f32, f64, i16, i32, i64, i8, u8}, # aten::_local_scalar_dense, aten::mvlgamma.out
torch.nn.functional.conv1d: {bf16, f32, f64, i64},
torch.nn.functional.conv2d: {bf16, f32, f64, i64},
torch.nn.functional.conv_transpose1d: {f32, f64, i64},
torch.nn.functional.conv_transpose2d: {f32, f64, i64},
torch.nn.functional.conv_transpose3d: {f32, f64, i64},
torch.nn.functional.ctc_loss: {f32, f64},
torch.nn.functional.gaussian_nll_loss: {bf16, f32, f64}, # aten::_local_scalar_dense
torch.nn.functional.grid_sample: {f32, f64}, # aten::grid_sampler_2d, aten::grid_sampler_3d
torch.nn.functional.max_pool3d: {f32, f64}, # aten::max_pool3d_with_indices
torch.nn.functional.max_pool3d_with_indices: {f32, f64}, # aten::max_pool3d_with_indices
torch.nn.functional.max_unpool1d: {f32, f64}, # aten::max_unpool2d
torch.nn.functional.max_unpool2d: {f32, f64}, # aten::max_unpool2d
torch.nn.functional.max_unpool3d: {f32, f64}, # aten::max_unpool3d
torch.nn.functional.multi_margin_loss: {f32, f64}, # aten::multi_margin_loss
torch.nn.functional.multilabel_margin_loss: {f32, f64}, # aten::multilabel_margin_loss_forward
torch.nn.functional.one_hot: {i64}, # aten::_local_scalar_dense
torch.nn.functional.pdist: {f32, f64}, # aten::_pdist_forward
torch.nn.functional.prelu: {bf16, f32, f64}, # aten::prelu
torch.nn.functional.rrelu: {bf16, f32, f64}, # aten::rrelu_with_noise
torch.nn.functional.unfold: {bf16, f16, f32, f64}, # aten::im2col
torch.nonzero: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::nonzero, aten::nonzero.out
torch.polar: {f32, f64}, # aten::polar.out
torch.repeat_interleave: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::repeat_interleave.Tensor
torch.segment_reduce: {bf16, f16, f32, f64}, # aten::segment_reduce
torch.searchsorted: {bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::searchsorted.Tensor, aten::searchsorted.Tensor_out
torch.symeig: {f32, f64},
torch.take: {b8, bf16, f16, f32, f64, i16, i32, i64, i8, u8}, # aten::take, aten::take.out
torch.vdot: {bf16, f32, f64, i16, i32, i64, i8, u8}, # aten::vdot
torch.ormqr: {f32, f64},
torch.cholesky: {f32, f64}, # aten::cholesky, aten::cholesky.out
torch.cholesky_inverse: {f32, f64}, # aten::cholesky_inverse, aten::cholesky_inverse.out
torch.cholesky_solve: {f32, f64}, # aten::_cholesky_solve_helper
torch.eig: {f32, f64}, # aten::_local_scalar_dense
torch.geqrf: {f32, f64}, # aten::geqrf
torch.linalg.eig: {f32, f64}, # aten::linalg_eig
torch.linalg.eigvals: {f32, f64},
torch.linalg.householder_product: {f32, f64}, # aten::linalg_householder_product
torch.linalg.lstsq: {f32, f64}, # aten::linalg_lstsq.out
torch.linalg.solve_triangular: {f32, f64}, # aten::linalg_solve_triangular
}
"""
# This is some sample code for how we could dump these dicts into YAML
# file for easier reading/writing
import yaml
print(yaml.dump(
{resolve_name(k): [dtype_abbrs[d] for d in v]
for k, v in meta_function_expected_failures.items()}, default_flow_style=None))
import sys
sys.exit()
"""
meta_function_skips = {
torch.aminmax: {b8, f32, f64, i16, i32, i64, i8, u8},
torch.cummax: {b8, bf16, f32, f64, i16, i32, i64, i8, u8},
torch.cummin: {b8, bf16, f32, f64, i16, i32, i64, i8, u8},
torch.diff: {b8},
torch.equal: {b8, bf16, c128, c64, c32, f16, f32, f64, i16, i32, i64, i8, u8},
torch.functional.cdist: {f32, f64},
torch.nanmean: {bf16, f16, f32, f64},
torch.functional.tensordot: {bf16, f32, f64, i16, i32, i64, i8, u8},
torch.inner: {bf16, f32, f64, i16, i32, i64, i8, u8},
torch.nn.functional.cross_entropy: {bf16, f32, f64},
torch.nn.functional.interpolate: {bf16, f32, f64, u8},
torch.nanmean: {bf16, f16, f32, f64}, # TODO(chilli): Doesn't seem to work for some reason?
torch.nn.functional.nll_loss: {bf16, f32, f64}, # TODO
torch.linalg.pinv: {f32, f64},
torch.empty: {b8, bf16, c128, c64, c32, f16, f32, f64, i16, i32, i64, i8, u8},
}
meta_function_device_expected_failures = defaultdict(dict)
meta_function_device_skips = defaultdict(dict)
meta_function_device_expected_failures['cpu'] = {
}
meta_function_device_expected_failures['cuda'] = {
torch.corrcoef: {bf16, f16}, # aten::_local_scalar_dense
torch.cov: {f16}, # aten::_local_scalar_dense
torch.fft.fft2: {c32, f16}, # aten::_fft_c2c, aten::_fft_c2c.out
torch.fft.fft: {c32, f16}, # aten::_fft_c2c, aten::_fft_c2c.out
torch.fft.fftn: {c32, f16}, # aten::_fft_c2c, aten::_fft_c2c.out
torch.fft.hfft2: {c32, f16}, # aten::_fft_c2c
torch.fft.hfft: {c32, f16},
torch.fft.hfftn: {c32, f16}, # aten::_fft_c2c
torch.fft.ifft2: {c32, f16}, # aten::_fft_c2c, aten::_fft_c2c.out
torch.fft.ifft: {c32, f16}, # aten::_fft_c2c, aten::_fft_c2c.out
torch.fft.ifftn: {c32, f16}, # aten::_fft_c2c, aten::_fft_c2c.out
torch.fft.ihfft2: {f16},
torch.fft.ihfft: {f16},
torch.fft.ihfftn: {f16},
torch.fft.irfft2: {c32, f16}, # aten::_fft_c2r, aten::_fft_c2r.out
torch.fft.irfft: {c32, f16}, # aten::_fft_c2r, aten::_fft_c2r.out
torch.fft.irfftn: {c32, f16}, # aten::_fft_c2r, aten::_fft_c2r.out
torch.fft.rfft2: {f16},
torch.fft.rfft: {f16},
torch.fft.rfftn: {f16},
torch.functional.unique: {f16}, # aten::_unique2, aten::unique_dim
torch.functional.unique_consecutive: {f16}, # aten::unique_consecutive
torch.geqrf: {f32, f64}, # aten::geqrf
torch.histc: {i16, i32, i64, i8}, # aten::histc, aten::histc.out
torch.kthvalue: {f16}, # aten::kthvalue.values
torch.linalg.householder_product: {f32, f64}, # aten::linalg_householder_product, aten::linalg_householder_product.out
torch.linalg.solve_triangular: {f32, f64}, # aten::linalg_solve_triangular, aten::linalg_solve_triangular.out
torch.logcumsumexp: {bf16, f16}, # aten::_logcumsumexp, aten::_logcumsumexp.out
torch.matrix_exp: {f16}, # aten::linalg_matrix_exp
torch.median: {f16}, # aten::median, aten::median.dim_values
torch.multinomial: {f16}, # aten::multinomial, aten::multinomial.out
torch.mvlgamma: {f16}, # aten::_local_scalar_dense, aten::mvlgamma.out
torch.nn.functional.conv1d: {f16, c32},
torch.nn.functional.conv2d: {f16, c32},
torch.nn.functional.conv_transpose1d: {bf16, f16},
torch.nn.functional.conv_transpose2d: {bf16, f16},
torch.nn.functional.conv_transpose3d: {bf16, f16},
torch.nn.functional.gaussian_nll_loss: {f16}, # aten::_local_scalar_dense
torch.nn.functional.grid_sample: {f16}, # aten::grid_sampler_2d, aten::grid_sampler_3d
torch.nn.functional.max_pool3d: {bf16, f16}, # aten::max_pool3d_with_indices
torch.nn.functional.max_pool3d_with_indices: {bf16, f16}, # aten::max_pool3d_with_indices
torch.nn.functional.max_unpool1d: {f16}, # aten::max_unpool2d
torch.nn.functional.max_unpool2d: {f16}, # aten::max_unpool2d
torch.nn.functional.max_unpool3d: {f16}, # aten::max_unpool3d
torch.nn.functional.multi_margin_loss: {bf16, f16}, # aten::multi_margin_loss
torch.nn.functional.multilabel_margin_loss: {bf16, f16}, # aten::multilabel_margin_loss_forward
torch.nn.functional.prelu: {f16}, # aten::prelu
torch.nn.functional.rrelu: {f16}, # aten::rrelu_with_noise
torch.ormqr: {f32, f64}, # aten::ormqr, aten::ormqr.out
torch.vdot: {f16}, # aten::vdot
}
meta_function_device_skips['cuda'] = {
torch.cummax: {f16},
torch.cummin: {f16},
torch.functional.tensordot: {f16},
torch.inner: {f16},
torch.linalg.matrix_power: {f32, f64},
torch.linalg.matrix_rank: {f32, f64},
torch.linalg.svd: {f32, f64},
torch.nn.functional.cross_entropy: {f16},
torch.nn.functional.interpolate: {f16},
torch.nn.functional.nll_loss: {f16},
torch.svd: {f32, f64},
}
# This is a __torch_function__ mode that, when enabled, interposes every
# Torch API call and runs the operator as normal, and then reruns it
# with meta inputs, and then checks that everything about the output agrees.
# Most of the logic deals with faithfully replicating the original tensor
# as a meta tensor, which is nontrivial because there are a lot of subsystems
# that may potentially be exercised.
#
# That being said, this class is a little overkill for what it is doing in
# this test file (since I could have just inlined __torch_function__ on the
# OpInfo call, and OpInfos generally have very regular inputs), but it will be
# useful for more comprehensive testing e.g., as seen in
# https://github.com/pytorch/pytorch/pull/75994 The big benefit is it is
# A LOT more efficient that torch dispatch mode (at the cost of less coverage)
class MetaCrossRefFunctionMode(torch.overrides.TorchFunctionMode):
test_case: TestCase
device_type: str
dtype: torch.dtype
def __init__(self, test_case, *, device, dtype):
self.test_case = test_case
self.device_type = torch.device(device).type
self.dtype = dtype
def __torch_function__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
if torch.jit.is_tracing() or isinstance(func, torch.ScriptMethod):
return func(*args, **kwargs)
if self.dtype in meta_function_skips.get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_function_device_skips[self.device_type].get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_function_expected_failures.get(func, set()):
test_expect = TestExpect.XFAILURE
elif self.dtype in meta_function_device_expected_failures[self.device_type].get(func, set()):
test_expect = TestExpect.XFAILURE
else:
test_expect = TestExpect.SUCCESS
return run_meta_crossref(
self.test_case, test_expect, func, args,
kwargs, dtype=self.dtype, device_type=self.device_type
)
aten = torch.ops.aten
# these always fail
meta_dispatch_expected_failures = {
aten._convolution.default: {c64, i64, f64, c128, bf16, f32},
aten._ctc_loss.default: {f64, f32},
aten._histogramdd_bin_edges.default: {f64, f32},
aten._histogramdd_from_bin_cts.default: {f64, f32},
aten._histogramdd_from_bin_tensors.default: {f64, f32},
aten._local_scalar_dense.default: {c64, i64, c128, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten._pdist_forward.default: {f64, f32},
aten._unique2.default: {i64, bf16, u8, b8, f32, i8, f64, i16, i32},
aten.bincount.default: {i8, i64, i16, u8, i32},
aten.bucketize.Tensor: {i64, bf16, f16, u8, f32, i8, f64, i16, i32},
aten.bucketize.Tensor_out: {i64, bf16, f16, u8, f32, i8, f64, i16, i32},
aten.col2im.default: {c64, f32, f64, c128},
aten.complex.default: {c64, f64, c128, f16, f32},
aten.complex.out: {f16},
aten.convolution.default: {c64, i64, f64, c128, bf16, f32},
aten.count_nonzero.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.count_nonzero.dim_IntList: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.equal.default: {c64, i64, c128, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.frexp.Tensor: {bf16, f16, f64, f32},
aten.grid_sampler_2d.default: {f64, f32},
aten.grid_sampler_3d.default: {f64, f32},
aten.histc.default: {bf16, f64, f32},
aten.histc.out: {bf16, f64, f32},
aten.histogram.bin_ct: {f64, f32},
aten.histogram.bins_tensor: {f64, f32},
aten.im2col.default: {bf16, f16, f64, f32},
aten.kthvalue.default: {i64, bf16, u8, f32, i8, f64, i16, i32},
aten.linalg_matrix_exp.default: {bf16, f64, f32},
aten.log_sigmoid_forward.output: {bf16, f64, f32},
aten.logcumsumexp.default: {bf16, f64, f32},
aten.logcumsumexp.out: {bf16, f64, f32},
aten.masked_select.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.masked_select.out: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.max_pool3d_with_indices.default: {f64, f32},
aten.max_unpool2d.default: {f64, f32},
aten.max_unpool3d.default: {f64, f32},
aten.median.default: {i64, bf16, u8, f32, i8, f64, i16, i32},
aten.median.dim: {i64, bf16, u8, f32, i8, f64, i16, i32},
aten.mode.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.multi_margin_loss.default: {f64, f32},
aten.multilabel_margin_loss_forward.default: {f64, f32},
aten.multinomial.default: {bf16, f64, f32},
aten.multinomial.out: {bf16, f64, f32},
aten.mvlgamma.default: {i64, bf16, u8, f32, i8, f64, i16, i32},
aten.mvlgamma.out: {i64, bf16, u8, f32, i8, f64, i16, i32},
aten.nll_loss2d_forward.default: {bf16, f64, f32},
aten.nonzero.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.nonzero.out: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.polar.default: {f64, f32},
aten.prelu.default: {bf16, f64, f32},
aten.rrelu_with_noise.default: {bf16, f64, f32},
aten.searchsorted.Tensor: {i64, bf16, f16, u8, f32, i8, f64, i16, i32},
aten.searchsorted.Tensor_out: {i64, bf16, f16, u8, f32, i8, f64, i16, i32},
aten.segment_reduce.default: {bf16, f16, f32, f64},
aten.take.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.take.out: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.tensordot.out: {i64, bf16, u8, f32, i8, f64, i16, i32},
aten.to_sparse.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.to_sparse.sparse_dim: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.unique_consecutive.default: {i64, bf16, u8, b8, f32, i8, f64, i16, i32},
aten.unique_dim.default: {i64, bf16, u8, b8, f32, i8, f64, i16, i32},
aten.upsample_nearest3d.vec: {bf16, u8, f64, f32},
aten.vdot.default: {i64, bf16, u8, f32, i8, f64, i16, i32},
aten.vdot.out: {i64, bf16, u8, f32, i8, f64, i16, i32},
aten.cholesky.default: {f32, f64}, # aten::cholesky
aten.cholesky.out: {f32, f64}, # aten::cholesky.out
aten.cholesky_inverse.default: {f32, f64}, # aten::cholesky_inverse
aten.cholesky_inverse.out: {f32, f64}, # aten::cholesky_inverse.out
aten.cholesky_solve.default: {f32, f64}, # aten::_cholesky_solve_helper
aten.cholesky_solve.out: {f32, f64}, # aten::_cholesky_solve_helper
aten.eig.default: {f32, f64}, # aten::_local_scalar_dense
aten.geqrf.default: {f32, f64}, # aten::geqrf
aten.linalg_eig.default: {f32, f64}, # aten::linalg_eig
aten.linalg_householder_product.default: {f32, f64}, # aten::linalg_householder_product
aten.linalg_householder_product.out: {f32, f64}, # aten::linalg_householder_product.out
aten.linalg_lstsq.default: {f32, f64}, # aten::linalg_lstsq.out
aten.linalg_solve_triangular.default: {f32, f64}, # aten::linalg_solve_triangular
aten.linalg_solve_triangular.out: {f32, f64}, # aten::linalg_solve_triangular.out
aten.ormqr.default: {f32, f64}, # aten::ormqr
aten.ormqr.out: {f32, f64}, # aten::ormqr.out
aten.symeig.default: {f32, f64}, # aten::_symeig_helper
}
# these sometimes pass and sometimes fail
meta_dispatch_skips = {
aten.index.Tensor: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32, c32}, # at::nonzero doesn't have a Meta function
aten._to_copy.default: {i64, bf16, f16, u8, b8, f32, i8, f64, i16, i32},
aten.aminmax.default: {i64, u8, b8, f32, i8, f64, i16, i32},
aten.cummax.default: {i64, bf16, u8, b8, f32, i8, f64, i16, i32},
aten.cummin.default: {i64, bf16, u8, b8, f32, i8, f64, i16, i32},
aten.linalg_pinv.atol_rtol_tensor: {f32, f64},
aten.linalg_pinv.atol_rtol_tensor_out: {f32, f64},
aten.empty.memory_format: {b8, bf16, c128, c64, c32, f16, f32, f64, i16, i32, i64, i8, u8},
}
meta_dispatch_device_expected_failures = defaultdict(dict)
meta_dispatch_device_skips = defaultdict(dict)
meta_dispatch_device_expected_failures['cuda'] = {
aten._convolution.default: {f16, c32},
aten._unique2.default: {f16}, # aten::_unique2
aten._use_cudnn_ctc_loss.default: {f32, f64}, # aten::_use_cudnn_ctc_loss
aten.convolution.default: {f16, c32},
aten.cudnn_grid_sampler.default: {f16, f32, f64}, # aten::cudnn_grid_sampler
aten.geqrf.default: {f32, f64}, # aten::geqrf
aten.grid_sampler_2d.default: {f16}, # aten::grid_sampler_2d
aten.grid_sampler_3d.default: {f16}, # aten::grid_sampler_3d
aten.histc.default: {i16, i32, i64, i8}, # aten::histc
aten.histc.out: {i16, i32, i64, i8}, # aten::histc.out
aten.kthvalue.default: {f16}, # aten::kthvalue.values
aten.linalg_eigvalsh.out: {f32, f64}, # aten::linalg_eigvalsh.out
aten.linalg_householder_product.default: {f32, f64}, # aten::linalg_householder_product
aten.linalg_householder_product.out: {f32, f64}, # aten::linalg_householder_product.out
aten.linalg_matrix_exp.default: {f16}, # aten::linalg_matrix_exp
aten.linalg_solve_triangular.default: {f32, f64}, # aten::linalg_solve_triangular
aten.linalg_solve_triangular.out: {f32, f64}, # aten::linalg_solve_triangular.out
aten.log_sigmoid_forward.default: {bf16, f16, f64, f32},
aten.log_sigmoid_forward.output: {f16}, # aten::log_sigmoid_forward.output
aten.logcumsumexp.default: {bf16, f16}, # aten::_logcumsumexp
aten.logcumsumexp.out: {bf16, f16}, # aten::_logcumsumexp.out
aten.max_pool3d_with_indices.default: {bf16, f16}, # aten::max_pool3d_with_indices
aten.max_unpool2d.default: {f16}, # aten::max_unpool2d
aten.max_unpool3d.default: {f16}, # aten::max_unpool3d
aten.median.default: {f16}, # aten::median
aten.median.dim: {f16}, # aten::median.dim_values
aten.multi_margin_loss.default: {bf16, f16}, # aten::multi_margin_loss
aten.multilabel_margin_loss_forward.default: {bf16, f16}, # aten::multilabel_margin_loss_forward
aten.multinomial.default: {f16}, # aten::multinomial
aten.multinomial.out: {f16}, # aten::multinomial.out
aten.mvlgamma.default: {f16}, # aten::_local_scalar_dense
aten.mvlgamma.out: {f16}, # aten::mvlgamma.out
aten.native_group_norm.default: {bf16, f16},
aten.nll_loss2d_forward.default: {f16}, # aten::nll_loss2d_forward
aten.ormqr.default: {f32, f64}, # aten::ormqr
aten.ormqr.out: {f32, f64}, # aten::ormqr.out
aten.prelu.default: {f16}, # aten::prelu
aten.rrelu_with_noise.default: {f16}, # aten::rrelu_with_noise
aten.tensordot.out: {f16}, # aten::tensordot.out
aten.unique_consecutive.default: {f16}, # aten::unique_consecutive
aten.unique_dim.default: {f16}, # aten::unique_dim
aten.upsample_nearest3d.vec: {f16}, # aten::upsample_nearest3d.vec
aten.vdot.default: {f16}, # aten::vdot
aten.vdot.out: {f16}, # aten::vdot
}
meta_dispatch_device_skips['cuda'] = {
aten._conj.default: {c32, f16},
aten.cudnn_batch_norm.default: {f32, f64},
aten.cummax.default: {f16},
aten.cummin.default: {f16},
# ROCm stuff; technically this should be expected failure but it's
# not worth it; these should get unified anyway
aten.miopen_batch_norm.default: {f32},
}
class MetaCrossRefDispatchMode(torch.utils._python_dispatch.TorchDispatchMode):
test_case: TestCase
device: torch.device
dtype: torch.dtype
def __init__(self, test_case, *, device, dtype):
self.test_case = test_case
# save TLS
self.precision = test_case.precision
self.rel_tol = test_case.rel_tol
self.device_type = torch.device(device).type
self.dtype = dtype
def __torch_dispatch__(self, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
self.test_case.precision = self.precision
self.test_case.rel_tol = self.rel_tol
if self.dtype in meta_dispatch_skips.get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_dispatch_device_skips[self.device_type].get(func, set()):
test_expect = TestExpect.SKIP
elif self.dtype in meta_dispatch_expected_failures.get(func, set()):
test_expect = TestExpect.XFAILURE
elif self.dtype in meta_dispatch_device_expected_failures[self.device_type].get(func, set()):
test_expect = TestExpect.XFAILURE
else:
test_expect = TestExpect.SUCCESS
return run_meta_crossref(
self.test_case,
test_expect,
func,
args,
kwargs,
dtype=self.dtype,
device_type=self.device_type,
)
# NB: we're running these tests only on CUDA because there are some
# inconsistencies between CUDA and CPU, and running on CUDA makes it easier
# to ignore the CPU case when inconsistencies arise. Ideally we deal
# with the inconsistencies but this takes time.
class TestMeta(TestCase):
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyCUDA
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_meta(self, device, dtype, op):
# run the OpInfo sample inputs, cross-referencing them with the
# meta implementation and check the results are the same. All
# the heavy lifting happens in MetaCrossRefFunctionMode
func = op.get_op()
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
with MetaCrossRefFunctionMode.push(self, dtype=dtype, device=device):
expected = func(*args, **kwargs)
if isinstance(expected, torch.Tensor) and op.supports_out:
func(*args, **kwargs, out=expected)
@unittest.skipIf(TEST_WITH_ASAN, "Skipped under ASAN")
@onlyCUDA
@skipIfCrossRef
@suppress_warnings
@ops(op_db)
def test_dispatch_meta(self, device, dtype, op):
func = op.get_op()
samples = op.sample_inputs(device, dtype, requires_grad=False)
for sample_input in samples:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
with MetaCrossRefDispatchMode.push(self, dtype=dtype, device=device):
expected = func(*args, **kwargs)
if isinstance(expected, torch.Tensor) and op.supports_out:
func(*args, **kwargs, out=expected)
instantiate_device_type_tests(TestMeta, globals())
def print_op_str_if_not_supported(op_str):
op = OperatorName.parse(op_str)
packet = getattr(torch.ops.aten, str(op.name))
overload = getattr(packet, op.overload_name if op.overload_name else "default")
if any(overload in d for d in [meta_dispatch_skips, meta_dispatch_device_skips['cuda']]):
print(f"{overload} # SKIP")
if any(overload in d for d in [meta_dispatch_expected_failures, meta_dispatch_device_expected_failures['cuda']]):
print(overload)
if __name__ == "__main__":
COMPARE_XLA = os.getenv('PYTORCH_COMPARE_XLA', None)
if COMPARE_XLA is not None:
with open(COMPARE_XLA, "r") as f:
d = yaml.load(f, Loader=YamlLoader)
ops = d.get("full_codegen", []) + d.get("supported", []) + d.get("autograd", [])
for op_str in ops:
print_op_str_if_not_supported(op_str)
sys.exit(0)
COMPARE_TEXT = os.getenv('PYTORCH_COMPARE_TEXT', None)
if COMPARE_TEXT is not None:
with open(COMPARE_TEXT, "r") as f:
for op_str in f:
print_op_str_if_not_supported(op_str.strip())
sys.exit(0)
run_tests()