forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_native_mha.py
316 lines (287 loc) · 12.5 KB
/
test_native_mha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Owner(s): ["module: nn"]
import math
import torch
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
onlyCUDA,
skipMeta,
)
from torch.testing._internal.common_utils import run_tests, TestCase
class TestMHADeviceType(TestCase):
@torch.no_grad()
def _test_transform_bias_rescale_qkv_impl(
self, device, dtype, use_nt, use_padding=False
):
tests = [
(64, 4, 16, 8),
# dim_per_head = 12 does not divide evenly by CPU vectorization length of 8
(24, 2, 4, 2),
# Make sure CUDA can handle small input sizes
(2, 2, 2, 2),
# dim_per_head = 6 does not divide evenly by CUDA vectorization length of 4,
# causes alignment issues
(24, 4, 4, 2),
(48, 4, 16, 8),
]
for (embed_dim, num_heads, bs, sl) in tests:
with self.subTest(embed_dim=embed_dim, num_heads=num_heads, bs=bs, sl=sl):
torch.manual_seed(9343)
dense_x = x = (
torch.randn(bs, sl, 3 * embed_dim, device=device, dtype=dtype) * 10
)
if use_padding:
x[0][-1] = torch.full(x[0][-1].shape, float("-Inf"))
if use_nt:
xs = list(torch.unbind(x))
if use_padding:
xs[0] = xs[0][:-1]
x = torch.nested_tensor(xs, device=device, dtype=dtype)
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
# We have to use inference_mode here because q/k/v are
# all views of the same Tensor, which autograd doesn't
# like. This is fine because this function is only
# exposed to Python for purposes of writing this test.
with torch.inference_mode():
(q, k, v) = torch._transform_bias_rescale_qkv(
x, qkv.bias, num_heads=num_heads
)
def simple_transform_bias_rescale_qkv(qkv, bias):
(q, k, v) = torch.split(qkv, embed_dim, dim=-1)
(q_bias, k_bias, v_bias) = torch.split(bias, embed_dim, dim=-1)
def embiggen(x):
if not use_nt:
return x
b, t, d = x.size()
t = t + (8 - t % 8) % 8
newsize = (b, t, d)
new_x = torch.zeros(newsize, device=device, dtype=dtype)
new_x[:x.size()[0], :x.size()[1], :x.size()[2]] = x
return new_x
return tuple(
embiggen(x).reshape(
(bs, -1, num_heads, embed_dim // num_heads)
).transpose(2, 1)
for x in (
(q + q_bias) / math.sqrt(embed_dim // num_heads),
(k + k_bias),
(v + v_bias),
)
)
correct_q, correct_k, correct_v = simple_transform_bias_rescale_qkv(
dense_x, qkv.bias
)
if use_nt and use_padding:
for t in (correct_q, correct_k, correct_v):
t[t == float("-Inf")] = 0
self.assertEqual(q.size(), correct_q.size())
torch.testing.assert_close(q, correct_q)
torch.testing.assert_close(k, correct_k)
torch.testing.assert_close(v, correct_v)
@dtypesIfCUDA(torch.float)
@dtypes(torch.float)
@skipMeta
def test_transform_bias_rescale_qkv(self, device, dtype):
for use_padding in (False, True):
with self.subTest(use_padding=use_padding):
self._test_transform_bias_rescale_qkv_impl(
device, dtype, use_nt=False, use_padding=use_padding
)
@dtypesIfCUDA(torch.float)
@dtypes(torch.float)
@skipMeta
@onlyCUDA
def test_transform_bias_rescale_qkv_nested(self, device, dtype):
for use_padding in (False, True):
with self.subTest(use_padding=use_padding):
self._test_transform_bias_rescale_qkv_impl(
device, dtype, use_nt=True, use_padding=use_padding
)
def _test_multihead_attention_impl(
self, device, dtype, mode, use_nt, need_weights, average_attn_weights, use_padding=False, pad_all=False
):
embed_dim = 64
num_heads = 4
bs = 16
sl = 8
q = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype) * 10
if use_padding:
if pad_all:
for q_i in q:
q_i[-1] = torch.zeros_like(q[0][-1], device=device, dtype=dtype)
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
for mask_i in mask:
mask_i[-1] = True
else:
q[0][-1] = torch.zeros_like(q[0][-1], device=device, dtype=dtype)
mask = torch.zeros(q.shape[:-1], device=device, dtype=torch.bool)
mask[0][-1] = True
if mode == "self":
k = q
v = q
elif mode == "encdec":
k = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype) * 10
v = k
elif mode == "generic":
k = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype) * 10
v = torch.randn(bs, sl, embed_dim, device=device, dtype=dtype) * 10
else:
self.fail(f"invalid mode `{mode}`!")
qkv = torch.nn.Linear(embed_dim, 3 * embed_dim, device=device, dtype=dtype)
proj = torch.nn.Linear(embed_dim, embed_dim, device=device, dtype=dtype)
pt = torch.nn.MultiheadAttention(
embed_dim, num_heads, batch_first=True, device=device, dtype=dtype
)
pt.in_proj_weight = qkv.weight
pt.in_proj_bias = qkv.bias
pt.out_proj.weight = proj.weight
pt.out_proj.bias = proj.bias
class NativeMHA(torch.nn.Module):
def __init__(self, embed_dim, num_heads, qkv, proj):
super().__init__()
self.qkv = qkv
self.proj = proj
self.embed_dim = embed_dim
self.num_heads = num_heads
def forward(self, q, k, v, key_padding_mask):
return torch._native_multi_head_attention(
q,
k,
v,
self.embed_dim,
self.num_heads,
self.qkv.weight,
self.qkv.bias,
self.proj.weight,
self.proj.bias,
key_padding_mask,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
)
npt = NativeMHA(
embed_dim=embed_dim, num_heads=num_heads, qkv=qkv, proj=proj
).to(dtype)
if device == "cuda":
pt = pt.cuda()
npt = npt.cuda()
ypt, weight_pt = pt(
q,
k,
v,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
key_padding_mask=mask if use_padding else None,
)
if use_nt:
qs = list(torch.unbind(q))
if use_padding:
if pad_all:
qs = [x[:-1] for x in qs]
else:
qs[0] = qs[0][:-1]
q = torch.nested_tensor(qs, device=device, dtype=dtype)
if mode == "self":
k = v = q
elif mode == "encdec":
k = torch.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
v = k
else:
k = torch.nested_tensor(torch.unbind(k), device=device, dtype=dtype)
v = torch.nested_tensor(torch.unbind(v), device=device, dtype=dtype)
ynpt, weight_npt = npt(
q, k, v, key_padding_mask=mask if use_padding and not use_nt else None
)
if use_nt:
ynpt = ynpt.to_padded_tensor(0)
if pad_all:
ynpt_final = torch.zeros_like(ypt)
ynpt_final[:, :ynpt.shape[1], :] = ynpt
ynpt = ynpt_final
def do_pad_all(tensors):
for t in tensors:
for t_i in t:
t_i[-1] = torch.zeros_like(t_i[-1], device=device, dtype=dtype)
# PyTorch implementation returns non-zero junk in the padding
# locations; overwrite it so that the comparison works out.
if use_padding:
ypt[0][-1] = torch.zeros_like(ypt[0][-1], device=device, dtype=dtype)
ynpt[0][-1] = torch.zeros_like(ynpt[0][-1], device=device, dtype=dtype)
if pad_all:
do_pad_all((ypt, ynpt))
# Zero the last row of each TxT weight matrix
if need_weights:
if average_attn_weights:
weight_pt[0][-1] = torch.zeros_like(weight_pt[0][-1], device=device, dtype=dtype)
weight_npt[0][-1] = torch.zeros_like(weight_npt[0][-1], device=device, dtype=dtype)
if pad_all:
do_pad_all((weight_pt, weight_npt))
else:
for nh in range(num_heads):
weight_pt[0][nh][-1] = torch.zeros_like(weight_pt[0][nh][-1], device=device, dtype=dtype)
weight_npt[0][nh][-1] = torch.zeros_like(weight_npt[0][nh][-1], device=device, dtype=dtype)
if dtype == torch.half:
torch.testing.assert_close(ypt, ynpt, atol=1e-3, rtol=1e-3)
else:
# High rtol seems necessary for
# test_native_multihead_attention_cpu_float32 on Windows,
# otherwise 2e-4 would likely be fine.
torch.testing.assert_close(ypt, ynpt, atol=2e-5, rtol=2e-3)
if need_weights:
torch.testing.assert_close(weight_pt, weight_npt)
else:
self.assertEqual(weight_pt, weight_npt)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@torch.no_grad()
def test_native_multihead_self_attention(self, device, dtype):
for (use_padding, pad_all) in ((False, False), (True, False), (True, True)):
for use_nt in (False, True):
# Figuring out exactly which elements of the weights are garbage in this
# case eludes me, and it's not particularly enlightening to test anyway
# because padding doesn't especially affect the intermediate weights.
for need_weights in (False, not pad_all):
for average_attn_weights in (False, True):
with self.subTest(use_padding=use_padding, pad_all=pad_all,
use_nt=use_nt, need_weights=need_weights,
average_attn_weights=average_attn_weights):
self._test_multihead_attention_impl(
device,
dtype,
"self",
use_nt=use_nt,
use_padding=use_padding,
pad_all=pad_all,
need_weights=need_weights,
average_attn_weights=average_attn_weights,
)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@torch.no_grad()
def test_native_multihead_encoder_decoder_attention(self, device, dtype):
self._test_multihead_attention_impl(
device,
dtype,
"encdec",
use_nt=False,
need_weights=False,
average_attn_weights=False,
)
@dtypesIfCUDA(torch.float, torch.half)
@dtypes(torch.float)
@skipMeta
@torch.no_grad()
def test_native_multihead_attention(self, device, dtype):
self._test_multihead_attention_impl(
device,
dtype,
"generic",
use_nt=False,
need_weights=False,
average_attn_weights=False,
)
instantiate_device_type_tests(TestMHADeviceType, globals())
if __name__ == "__main__":
run_tests()