forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
input_pipeline.py
250 lines (207 loc) · 8.84 KB
/
input_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Input pipelines."""
import tensorflow as tf
def decode_record(record, name_to_features):
"""Decodes a record to a TensorFlow example."""
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = t
return example
def process_singledoc_dataset(dataset, batch_size, params):
"""Parses and batches single-doc dataset."""
name_to_features = {
"input_ids_a": tf.io.FixedLenFeature([params.len_title], tf.int64),
"input_ids_b": tf.io.FixedLenFeature([params.len_passage], tf.int64),
"input_mask_b": tf.io.FixedLenFeature([params.len_passage], tf.int64),
"segment_ids_b": tf.io.FixedLenFeature([params.len_passage], tf.int64),
}
decode_fn = lambda record: decode_record(record, name_to_features)
dataset = dataset.map(
decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
def _select_data_from_record(record):
"""Filter out features to use for pretraining."""
return {
"input_ids": record["input_ids_b"],
"input_mask": record["input_mask_b"],
"segment_ids": record["segment_ids_b"],
"target_ids": record["input_ids_a"],
}
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=True)
return dataset
def decode_sparse_record(record, name_to_features):
"""Decodes a sparse record to a TensorFlow example."""
example = tf.io.parse_single_example(record, name_to_features)
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
# So cast all int64 to int32.
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.cast(t, tf.int32)
example[name] = tf.sparse.to_dense(t)
return example
def _filter_max_length(example, max_title_length=256):
"""Indicates whether the example's length is lower than the maximum length."""
return tf.size(example["targets"]) <= max_title_length
def process_singledoc_transformer_dataset(dataset, batch_size, params):
"""Parses, batches and pads single-doc dataset."""
name_to_features = {
"inputs": tf.io.VarLenFeature(tf.int64),
"targets": tf.io.VarLenFeature(tf.int64),
}
decode_fn = lambda record: decode_sparse_record(record, name_to_features)
dataset = dataset.map(
decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
def _select_data_from_record(record):
"""Filter out features to use for pretraining."""
input_ids = record["inputs"][:params.len_passage]
target_ids = record["targets"]
input_mask = tf.ones_like(input_ids)
segment_ids = tf.zeros_like(input_ids)
return {
"input_ids": input_ids,
"input_mask": input_mask,
"segment_ids": segment_ids,
"target_ids": target_ids,
}
dataset = dataset.filter(lambda x: _filter_max_length(x, params.len_title))
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.padded_batch(
batch_size, {
"input_ids": [params.len_passage],
"input_mask": [params.len_passage],
"segment_ids": [params.len_passage],
"target_ids": [params.len_title],
},
padding_values={
"input_ids": params.pad_token_id,
"input_mask": 0,
"segment_ids": 0,
"target_ids": params.pad_token_id,
},
drop_remainder=True)
return dataset
def multidoc_parse_spec(params, training=True):
"""Gets the mutli-doc tf.Example parsing spec."""
len_p = params.len_passage
name_to_features = {}
feature_list = ["input_ids", "input_mask", "segment_ids"]
for idx in params.passage_list:
for feature in feature_list:
name_to_features["%s_%s" % (feature, idx)] = tf.io.FixedLenFeature(
[len_p], tf.int64)
if training:
# Cluster title.
name_to_features["input_ids_a"] = tf.io.FixedLenFeature([params.len_title],
tf.int64)
return name_to_features, feature_list
def process_multidoc_dataset(dataset, batch_size, params):
"""Parses, organizes and batches multi-doc dataset."""
name_to_features, feature_list = multidoc_parse_spec(params)
decode_fn = lambda record: decode_record(record, name_to_features)
dataset = dataset.map(
decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)
def _select_data_from_record(record):
"""Filter out features to use for pretraining."""
features = {"target_ids": record["input_ids_a"]}
for feature in feature_list:
tensors = [record["%s_%s" % (feature, i)] for i in params.passage_list]
features[feature] = tf.stack(tensors)
return features
dataset = dataset.map(
_select_data_from_record,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
dataset = dataset.batch(batch_size, drop_remainder=True)
return dataset
def create_dataset(file_paths,
batch_size,
params,
is_training=True,
input_pipeline_context=None):
"""Creates input dataset from (tf)records files for pretraining."""
dataset = tf.data.Dataset.list_files(file_paths, shuffle=is_training)
if input_pipeline_context and input_pipeline_context.num_input_pipelines > 1:
if not is_training or params.input_sharding:
dataset = dataset.shard(input_pipeline_context.num_input_pipelines,
input_pipeline_context.input_pipeline_id)
if is_training:
dataset = dataset.repeat()
# We set shuffle buffer to exactly match total number of
# training files to ensure that training data is well shuffled.
dataset = dataset.shuffle(len(file_paths))
# In parallel, create tf record dataset for each train files.
# cycle_length = 8 means that up to 8 files will be read and deserialized in
# parallel. You may want to increase this number if you have a large number of
# CPU cores.
dataset = dataset.interleave(
tf.data.TFRecordDataset,
cycle_length=8,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
if is_training:
dataset = dataset.shuffle(100)
if params.get("multi_channel_cross_attention", value=False):
dataset = process_multidoc_dataset(dataset, batch_size, params)
else:
if not params.input_data_not_padded:
dataset = process_singledoc_dataset(dataset, batch_size, params)
else:
dataset = process_singledoc_transformer_dataset(dataset, batch_size,
params)
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def get_input_dataset(input_file_pattern,
batch_size,
params,
is_training,
strategy=None):
"""Returns input dataset from input file string."""
# When using TPU pods, we need to clone dataset across
# workers and need to pass in function that returns the dataset rather
# than passing dataset instance itself.
use_dataset_fn = isinstance(strategy, tf.distribute.TPUStrategy)
if use_dataset_fn:
if batch_size % strategy.num_replicas_in_sync != 0:
raise ValueError(
"Batch size must be divisible by number of replicas : {}".format(
strategy.num_replicas_in_sync))
# As auto rebatching is not supported in
# `distribute_datasets_from_function()` API, which is
# required when cloning dataset to multiple workers in eager mode,
# we use per-replica batch size.
batch_size = int(batch_size / strategy.num_replicas_in_sync)
def _dataset_fn(ctx=None):
"""Returns tf.data.Dataset for distributed BERT pretraining."""
input_files = []
for input_pattern in input_file_pattern.split(","):
input_files.extend(tf.io.gfile.glob(input_pattern))
return create_dataset(
input_files,
batch_size,
params,
is_training=is_training,
input_pipeline_context=ctx)
if use_dataset_fn:
return strategy.distribute_datasets_from_function(_dataset_fn)
else:
return strategy.experimental_distribute_dataset(_dataset_fn())