forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
89 lines (71 loc) · 3.21 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utility helpers for Bert2Bert."""
from typing import Optional, Text
from absl import logging
import tensorflow as tf
from official.modeling.hyperparams import params_dict
from official.nlp.bert import configs
from official.nlp.nhnet import configs as nhnet_configs
def get_bert_config_from_params(
params: params_dict.ParamsDict) -> configs.BertConfig:
"""Converts a BertConfig to ParamsDict."""
return configs.BertConfig.from_dict(params.as_dict())
def get_test_params(cls=nhnet_configs.BERT2BERTConfig):
return cls.from_args(**nhnet_configs.UNITTEST_CONFIG)
# pylint: disable=protected-access
def encoder_common_layers(transformer_block):
return [
transformer_block._attention_layer,
transformer_block._attention_layer_norm,
transformer_block._intermediate_dense, transformer_block._output_dense,
transformer_block._output_layer_norm
]
# pylint: enable=protected-access
def initialize_bert2bert_from_pretrained_bert(
bert_encoder: tf.keras.layers.Layer,
bert_decoder: tf.keras.layers.Layer,
init_checkpoint: Optional[Text] = None) -> None:
"""Helper function to initialze Bert2Bert from Bert pretrained checkpoint."""
ckpt = tf.train.Checkpoint(model=bert_encoder)
logging.info(
"Checkpoint file %s found and restoring from "
"initial checkpoint for core model.", init_checkpoint)
status = ckpt.restore(init_checkpoint)
# Expects the bert model is a subset of checkpoint as pooling layer is
# not used.
status.assert_existing_objects_matched()
logging.info("Loading from checkpoint file completed.")
# Saves a checkpoint with transformer layers.
encoder_layers = []
for transformer_block in bert_encoder.transformer_layers:
encoder_layers.extend(encoder_common_layers(transformer_block))
# Restores from the checkpoint with encoder layers.
decoder_layers_to_initialize = []
for decoder_block in bert_decoder.decoder.layers:
decoder_layers_to_initialize.extend(
decoder_block.common_layers_with_encoder())
if len(decoder_layers_to_initialize) != len(encoder_layers):
raise ValueError(
"Source encoder layers with %d objects does not match destination "
"decoder layers with %d objects." %
(len(decoder_layers_to_initialize), len(encoder_layers)))
for dest_layer, source_layer in zip(decoder_layers_to_initialize,
encoder_layers):
try:
dest_layer.set_weights(source_layer.get_weights())
except ValueError as e:
logging.error(
"dest_layer: %s failed to set weights from "
"source_layer: %s as %s", dest_layer.name, source_layer.name, str(e))