Skip to content

Classification of Kidney disease using Sklearn and Custom ML Algorithms

License

Notifications You must be signed in to change notification settings

ap-atul/Chronic-Kidney-Disease

Repository files navigation

Chronic-Kidney-Disease

Prediction on Chronic Kidney Disease using Sklearn and Custom ML.

Instructions to run

(requires python 3+)

  1. Install all libraries using(requirements file)
$ pip3 install -r requirements.txt
  1. Run the ui.py file
$ python3 ui.py

Screen

screen

Few Notes

The UCI Machine Learning Repository data set includes: Link :: https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease We use 24 + class = 25 ( 11 numeric ,14 nominal)

Training : 127 records Testing : 33 records

  • ge - age
  • bp - blood pressure
  • sg - specific gravity
  • al - albumin
  • su - sugar
  • rbc - red blood cells
  • pc - pus cell
  • pcc - pus cell clumps
  • ba - bacteria
  • bgr - blood glucose random
  • bu - blood urea
  • sc - serum creatinine
  • sod - sodium
  • pot - potassium
  • hemo - hemoglobin
  • pcv - packed cell volume
  • wc - white blood cell count
  • rc - red blood cell count
  • htn - hypertension
  • dm - diabetes mellitus
  • cad - coronary artery disease
  • appet - appetite
  • pe - pedal edema
  • ane - anemia
  • class - class

Classification Algo

Classes

  1. Chronic (ckd)
  2. Not Chronic (notckd)
  • Logistic Regression
  • Naive Bayes
  • KNN

Accuracies

(These are the saved models accuracies)

  1. KNN accuracy:

    • Custom : 90.62
    • SKLearn : 90.62
  2. NB accuracy:

    • Custom : 100
    • SKLearn : 100
  3. LR accuracy:

    • Custom : 68.75
    • SKLearn : 100

Directory details

  1. dataset : processed csv file
  2. charts : plots to visualize data
  3. lib : custom implementations of all the algos
  4. model : saved pre-trained model (both custom and inbuilt)
  5. custom/ inbuilt : runner files to to prediction (training also)

About

Classification of Kidney disease using Sklearn and Custom ML Algorithms

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages