Prediction on Chronic Kidney Disease using Sklearn and Custom ML.
(requires python 3+)
- Install all libraries using(requirements file)
$ pip3 install -r requirements.txt
- Run the ui.py file
$ python3 ui.py
The UCI Machine Learning Repository data set includes: Link :: https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease We use 24 + class = 25 ( 11 numeric ,14 nominal)
Training : 127 records Testing : 33 records
- ge - age
- bp - blood pressure
- sg - specific gravity
- al - albumin
- su - sugar
- rbc - red blood cells
- pc - pus cell
- pcc - pus cell clumps
- ba - bacteria
- bgr - blood glucose random
- bu - blood urea
- sc - serum creatinine
- sod - sodium
- pot - potassium
- hemo - hemoglobin
- pcv - packed cell volume
- wc - white blood cell count
- rc - red blood cell count
- htn - hypertension
- dm - diabetes mellitus
- cad - coronary artery disease
- appet - appetite
- pe - pedal edema
- ane - anemia
- class - class
Classes
- Chronic (ckd)
- Not Chronic (notckd)
- Logistic Regression
- Naive Bayes
- KNN
(These are the saved models accuracies)
-
KNN accuracy:
- Custom : 90.62
- SKLearn : 90.62
-
NB accuracy:
- Custom : 100
- SKLearn : 100
-
LR accuracy:
- Custom : 68.75
- SKLearn : 100
- dataset : processed csv file
- charts : plots to visualize data
- lib : custom implementations of all the algos
- model : saved pre-trained model (both custom and inbuilt)
- custom/ inbuilt : runner files to to prediction (training also)