-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate_gpt2.py
68 lines (54 loc) · 1.9 KB
/
evaluate_gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#%%
from transformers import pipeline, set_seed
from datasets import load_dataset
from tqdm import tqdm
import re
import subprocess
from LatentPixel import confuse
import pandas as pd
import torch
from LatentPixel.utils import seed_everyting, gen_babi, process_lambda
seed_everyting(42)
torch.no_grad()
generator = pipeline('text-generation', model='gpt2', device='cuda')
results = pd.DataFrame(columns=['task', 'ratio', 'acc'])
confu_ratios = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]
#%% evaluate on babi
num_sample_babi = 5000
data = gen_babi(1, num_sample_babi, '|', '')
for index, ratio in enumerate(confu_ratios):
correct = 0
for prompt, target in tqdm(data):
try:
prompt = confuse(prompt, ratio)
gen = generator(prompt, max_length=5, return_full_text=False)
gen = gen[0]['generated_text'].strip().split()[0]
if gen.lower() == target.lower():
correct += 1
except:
pass
results.loc[index] = ['babi', ratio, correct / num_sample_babi]
results.to_csv('gpt2_confuse_eval.csv')
#%% evaluate on lambada
data = load_dataset('lambada', split='test')
for ratio in confu_ratios:
index += 1
correct = 0
num_sample = len(data)
for sample in tqdm(data):
txt = process_lambda(sample['text'])
prompt = ' '.join(txt.split()[:-1])
target = txt.split()[-1]
prompt = confuse(prompt, ratio)
try:
gen = generator(prompt, max_length=5, return_full_text=False, do_sample=False, min_length=5)
except:
gen = ''
try:
gen = gen[0]['generated_text'].strip().split()[0]
if gen.lower() == target.lower():
correct += 1
except IndexError:
pass
results.loc[index] = ['lambada', ratio, correct / num_sample]
results.to_csv('gpt2_confuse_eval.csv')