-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_flash.py
59 lines (53 loc) · 2.04 KB
/
test_flash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from LatentPixel.utils import timeit
from datasets import load_dataset, load_from_disk
from LatentPixel import LatentLlama
from LatentPixel.modeling.llama import LlamaForPatchCausalInference
from LatentPixel import TGraph, DEFAULT_BINARY_RENDERING
from tqdm import tqdm
import numpy as np
import os
@timeit
def main(model, data):
model.eval()
model.cuda()
for txt in tqdm(data['text'][:2000]):
words = txt.split()
prompt = process_lambda(' '.join(words[:-1]))
prompt = TGraph.from_text([prompt])
prompt = prompt._spacing_text(3)
prompt.set_device('cuda')
target = words[-1]
gen = model.autoregressive_generate(prompt, None, 4)
def process_lambda(raw: str) -> str:
raw = raw.replace('`` ', '"').replace(" ''", '"').replace('``', '"').replace("''", '"')
result = ''
for idx in range(len(raw) - 1):
c = raw[idx]
cn = raw[idx + 1]
if cn in ',.?><{}()\'' and c == ' ':
continue
if (raw[idx+1:idx+4] == "n't" or raw[idx+1:idx+4] == "'re" or raw[idx+1:idx+3] == "'d" or raw[idx+1:idx+3] == "'s" or raw[idx+1:idx+3] == "'m") and raw[idx] == ' ':
continue
if raw[idx+1] == "'" and raw[idx+2] in 'abcdefghijklmnopqrstuvwxyz' and raw[idx] == ' ':
continue
result += raw[idx]
result += raw[-1]
return result
if __name__ == "__main__":
#os.environ["HF_HOME"] = "/exports/eddie/scratch/s2302935/"
data = load_from_disk("storage/lambada")
TGraph.init_render(**DEFAULT_BINARY_RENDERING)
# Flash Attention
print("Flash Attention Speed")
model = LatentLlama(
backbone_path='storage/llama/',
num_channels=1,
patch_len=2,
patch_size=8,
binary=True,)
main(model, data)
# No Flash
setattr(model.backbone.config, 'flash', False)
config = model.backbone.config
model.backbone = LlamaForPatchCausalInference.from_pretrained('storage/llama/', config=config, ignore_mismatched_sizes=True)
main(model, data)