-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathetth1_m.log
740 lines (738 loc) · 29.4 KB
/
etth1_m.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
Dataset: ETTh1
Arguments: Namespace(alpha=0.0005, archive='forecast_csv', batch_size=128, dataset='ETTh1', epochs=None, eval=True, gpu=0, iters=None, kernels=[1, 2, 4, 8, 16, 32, 64, 128], lr=0.001, max_threads=8, max_train_length=201, repr_dims=320, run_name='forecast_multivar', save_every=None, seed=0)
input_fc.weight [14, 64] Place(gpu:0)
input_fc.bias [64] Place(gpu:0)
feature_extractor.net.0.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.0.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.0.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.0.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.1.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.1.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.1.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.1.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.2.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.2.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.2.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.2.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.3.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.3.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.3.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.3.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.4.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.4.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.4.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.4.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.5.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.5.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.5.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.5.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.6.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.6.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.6.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.6.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.7.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.7.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.7.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.7.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.8.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.8.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.8.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.8.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.9.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.9.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.9.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.9.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.10.conv1.conv.weight [320, 64, 3] Place(gpu:0)
feature_extractor.net.10.conv1.conv.bias [320] Place(gpu:0)
feature_extractor.net.10.conv2.conv.weight [320, 320, 3] Place(gpu:0)
feature_extractor.net.10.conv2.conv.bias [320] Place(gpu:0)
feature_extractor.net.10.projector.weight [320, 64, 1] Place(gpu:0)
feature_extractor.net.10.projector.bias [320] Place(gpu:0)
tfd.0.weight [160, 320, 1] Place(gpu:0)
tfd.0.bias [160] Place(gpu:0)
tfd.1.weight [160, 320, 2] Place(gpu:0)
tfd.1.bias [160] Place(gpu:0)
tfd.2.weight [160, 320, 4] Place(gpu:0)
tfd.2.bias [160] Place(gpu:0)
tfd.3.weight [160, 320, 8] Place(gpu:0)
tfd.3.bias [160] Place(gpu:0)
tfd.4.weight [160, 320, 16] Place(gpu:0)
tfd.4.bias [160] Place(gpu:0)
tfd.5.weight [160, 320, 32] Place(gpu:0)
tfd.5.bias [160] Place(gpu:0)
tfd.6.weight [160, 320, 64] Place(gpu:0)
tfd.6.bias [160] Place(gpu:0)
tfd.7.weight [160, 320, 128] Place(gpu:0)
tfd.7.bias [160] Place(gpu:0)
sfd.0.weight [101, 320, 160] Place(gpu:0)
sfd.0.bias [101, 160] Place(gpu:0)
---------------------------------------------------------------
input_fc.weight [14, 64] Place(gpu:0)
input_fc.bias [64] Place(gpu:0)
feature_extractor.net.0.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.0.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.0.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.0.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.1.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.1.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.1.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.1.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.2.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.2.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.2.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.2.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.3.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.3.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.3.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.3.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.4.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.4.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.4.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.4.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.5.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.5.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.5.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.5.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.6.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.6.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.6.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.6.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.7.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.7.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.7.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.7.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.8.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.8.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.8.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.8.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.9.conv1.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.9.conv1.conv.bias [64] Place(gpu:0)
feature_extractor.net.9.conv2.conv.weight [64, 64, 3] Place(gpu:0)
feature_extractor.net.9.conv2.conv.bias [64] Place(gpu:0)
feature_extractor.net.10.conv1.conv.weight [320, 64, 3] Place(gpu:0)
feature_extractor.net.10.conv1.conv.bias [320] Place(gpu:0)
feature_extractor.net.10.conv2.conv.weight [320, 320, 3] Place(gpu:0)
feature_extractor.net.10.conv2.conv.bias [320] Place(gpu:0)
feature_extractor.net.10.projector.weight [320, 64, 1] Place(gpu:0)
feature_extractor.net.10.projector.bias [320] Place(gpu:0)
tfd.0.weight [160, 320, 1] Place(gpu:0)
tfd.0.bias [160] Place(gpu:0)
tfd.1.weight [160, 320, 2] Place(gpu:0)
tfd.1.bias [160] Place(gpu:0)
tfd.2.weight [160, 320, 4] Place(gpu:0)
tfd.2.bias [160] Place(gpu:0)
tfd.3.weight [160, 320, 8] Place(gpu:0)
tfd.3.bias [160] Place(gpu:0)
tfd.4.weight [160, 320, 16] Place(gpu:0)
tfd.4.bias [160] Place(gpu:0)
tfd.5.weight [160, 320, 32] Place(gpu:0)
tfd.5.bias [160] Place(gpu:0)
tfd.6.weight [160, 320, 64] Place(gpu:0)
tfd.6.bias [160] Place(gpu:0)
tfd.7.weight [160, 320, 128] Place(gpu:0)
tfd.7.bias [160] Place(gpu:0)
sfd.0.weight [101, 320, 160] Place(gpu:0)
sfd.0.bias [101, 160] Place(gpu:0)
Epoch #0: loss=0.09111425280570984
Epoch #1: loss=2.8691141605377197
Epoch #2: loss=2.083372116088867
Epoch #3: loss=3.277621030807495
Epoch #4: loss=3.0168843269348145
Epoch #5: loss=2.0406439304351807
Epoch #6: loss=0.49195176362991333
Epoch #7: loss=3.0788066387176514
Epoch #8: loss=3.4395735263824463
Epoch #9: loss=3.126086473464966
Epoch #10: loss=3.3078372478485107
Epoch #11: loss=3.280325412750244
Epoch #12: loss=3.0605826377868652
Epoch #13: loss=4.142418384552002
Epoch #14: loss=2.742614984512329
Epoch #15: loss=3.512704610824585
Epoch #16: loss=2.7894647121429443
Epoch #17: loss=3.245826244354248
Epoch #18: loss=1.2596560716629028
Epoch #19: loss=1.5481983423233032
Epoch #20: loss=3.6840829849243164
Epoch #21: loss=3.7506349086761475
Epoch #22: loss=1.5797889232635498
Epoch #23: loss=3.3448026180267334
Epoch #24: loss=2.109933853149414
Epoch #25: loss=2.7903077602386475
Epoch #26: loss=0.39068901538848877
Epoch #27: loss=4.168085098266602
Epoch #28: loss=2.4162232875823975
Epoch #29: loss=4.961215019226074
Epoch #30: loss=4.404392719268799
Epoch #31: loss=1.599875807762146
Epoch #32: loss=3.855240821838379
Epoch #33: loss=1.4725024700164795
Epoch #34: loss=2.9297449588775635
Epoch #35: loss=2.8601760864257812
Epoch #36: loss=3.111814498901367
Epoch #37: loss=1.6526697874069214
Epoch #38: loss=2.9545788764953613
Epoch #39: loss=3.246351480484009
Epoch #40: loss=2.7546966075897217
Epoch #41: loss=3.290530204772949
Epoch #42: loss=3.283722162246704
Epoch #43: loss=2.8420872688293457
Epoch #44: loss=1.366636037826538
Epoch #45: loss=3.623574733734131
Epoch #46: loss=2.8842620849609375
Epoch #47: loss=2.6538796424865723
Epoch #48: loss=0.5925517678260803
Epoch #49: loss=2.43076229095459
Epoch #50: loss=3.1624419689178467
Epoch #51: loss=2.6967852115631104
Epoch #52: loss=1.6282713413238525
Epoch #53: loss=1.9500163793563843
Epoch #54: loss=2.8654000759124756
Epoch #55: loss=3.3310611248016357
Epoch #56: loss=1.334876298904419
Epoch #57: loss=2.3147904872894287
Epoch #58: loss=2.6439006328582764
Epoch #59: loss=2.764448404312134
Epoch #60: loss=1.2764679193496704
Epoch #61: loss=2.607144355773926
Epoch #62: loss=0.9391728043556213
Epoch #63: loss=2.9310693740844727
Epoch #64: loss=0.9385104179382324
Epoch #65: loss=2.2236328125
Epoch #66: loss=2.820805311203003
Epoch #67: loss=2.638841152191162
Epoch #68: loss=0.5777603983879089
Epoch #69: loss=2.3902623653411865
Epoch #70: loss=1.929857850074768
Epoch #71: loss=0.947801947593689
Epoch #72: loss=2.555757761001587
Epoch #73: loss=3.0610814094543457
Epoch #74: loss=2.8999714851379395
Epoch #75: loss=2.406397819519043
Epoch #76: loss=2.9204978942871094
Epoch #77: loss=2.3311429023742676
Epoch #78: loss=1.6879485845565796
Epoch #79: loss=2.7238073348999023
Epoch #80: loss=2.8018600940704346
Epoch #81: loss=0.35898175835609436
Epoch #82: loss=2.6909339427948
Epoch #83: loss=1.9859949350357056
Epoch #84: loss=2.512671709060669
Epoch #85: loss=2.9951772689819336
Epoch #86: loss=1.6365909576416016
Epoch #87: loss=2.3709938526153564
Epoch #88: loss=0.37241148948669434
Epoch #89: loss=2.918191909790039
Epoch #90: loss=2.292848825454712
Epoch #91: loss=0.30936112999916077
Epoch #92: loss=1.8904955387115479
Epoch #93: loss=1.8019124269485474
Epoch #94: loss=3.1220943927764893
Epoch #95: loss=2.747682809829712
Epoch #96: loss=1.5725566148757935
Epoch #97: loss=2.561310052871704
Epoch #98: loss=1.9251378774642944
Epoch #99: loss=1.3752940893173218
Epoch #100: loss=1.850577712059021
Epoch #101: loss=0.9701893329620361
Epoch #102: loss=2.4131996631622314
Epoch #103: loss=1.7661441564559937
Epoch #104: loss=1.9325846433639526
Epoch #105: loss=0.5348603129386902
Epoch #106: loss=3.1510708332061768
Epoch #107: loss=2.0542612075805664
Epoch #108: loss=0.4018405079841614
Epoch #109: loss=2.8796849250793457
Epoch #110: loss=1.979877233505249
Epoch #111: loss=1.1571059226989746
Epoch #112: loss=1.3688604831695557
Epoch #113: loss=1.5067486763000488
Epoch #114: loss=1.5656039714813232
Epoch #115: loss=2.028669834136963
Epoch #116: loss=2.0880990028381348
Epoch #117: loss=0.8210785984992981
Epoch #118: loss=2.8849129676818848
Epoch #119: loss=1.7507858276367188
Epoch #120: loss=1.1782922744750977
Epoch #121: loss=2.6852521896362305
Epoch #122: loss=2.3905630111694336
Epoch #123: loss=1.4049745798110962
Epoch #124: loss=0.3098100423812866
Epoch #125: loss=0.967423677444458
Epoch #126: loss=1.9294534921646118
Epoch #127: loss=2.551966667175293
Epoch #128: loss=1.860701084136963
Epoch #129: loss=2.8927369117736816
Epoch #130: loss=1.6257636547088623
Epoch #131: loss=1.08293616771698
Epoch #132: loss=2.541367292404175
Epoch #133: loss=1.933260440826416
Epoch #134: loss=2.0057129859924316
Epoch #135: loss=0.9607201814651489
Epoch #136: loss=2.0358681678771973
Epoch #137: loss=0.21684743463993073
Epoch #138: loss=2.601250410079956
Epoch #139: loss=1.5085299015045166
Epoch #140: loss=0.6086783409118652
Epoch #141: loss=2.8882076740264893
Epoch #142: loss=2.5763437747955322
Epoch #143: loss=0.8035719394683838
Epoch #144: loss=1.3590073585510254
Epoch #145: loss=0.901897668838501
Epoch #146: loss=2.404491424560547
Epoch #147: loss=0.5276321768760681
Epoch #148: loss=1.343646764755249
Epoch #149: loss=2.065613031387329
Epoch #150: loss=1.813981294631958
Epoch #151: loss=0.22791142761707306
Epoch #152: loss=2.4747555255889893
Epoch #153: loss=1.2314565181732178
Epoch #154: loss=0.5915427803993225
Epoch #155: loss=2.1398532390594482
Epoch #156: loss=0.19230759143829346
Epoch #157: loss=2.513679265975952
Epoch #158: loss=2.182046413421631
Epoch #159: loss=2.8799400329589844
Epoch #160: loss=1.5597753524780273
Epoch #161: loss=0.18603692948818207
Epoch #162: loss=3.4821043014526367
Epoch #163: loss=1.206541895866394
Epoch #164: loss=2.593142509460449
Epoch #165: loss=1.9466334581375122
Epoch #166: loss=0.7960483431816101
Epoch #167: loss=2.4534213542938232
Epoch #168: loss=1.8717825412750244
Epoch #169: loss=1.1122275590896606
Epoch #170: loss=1.345219612121582
Epoch #171: loss=2.105729579925537
Epoch #172: loss=0.7720990180969238
Epoch #173: loss=1.679100751876831
Epoch #174: loss=0.31413534283638
Epoch #175: loss=1.1254888772964478
Epoch #176: loss=1.3844338655471802
Epoch #177: loss=2.7073252201080322
Epoch #178: loss=2.3364856243133545
Epoch #179: loss=0.681836724281311
Epoch #180: loss=2.188474655151367
Epoch #181: loss=1.6459177732467651
Epoch #182: loss=0.8406949639320374
Epoch #183: loss=0.8135809898376465
Epoch #184: loss=2.1394031047821045
Epoch #185: loss=1.0715012550354004
Epoch #186: loss=0.20732775330543518
Epoch #187: loss=0.42592519521713257
Epoch #188: loss=1.6875394582748413
Epoch #189: loss=0.18457743525505066
Epoch #190: loss=1.390702724456787
Epoch #191: loss=0.6036196947097778
Epoch #192: loss=1.3028388023376465
Epoch #193: loss=2.2449753284454346
Epoch #194: loss=0.25809553265571594
Epoch #195: loss=0.9384673237800598
Epoch #196: loss=1.2085583209991455
Epoch #197: loss=0.15909677743911743
Epoch #198: loss=1.4774240255355835
Epoch #199: loss=2.993856906890869
Epoch #200: loss=1.6095588207244873
Epoch #201: loss=0.7126573920249939
Epoch #202: loss=1.865011215209961
Epoch #203: loss=1.2050471305847168
Epoch #204: loss=2.3047549724578857
Epoch #205: loss=2.6303462982177734
Epoch #206: loss=1.1354222297668457
Epoch #207: loss=1.2355009317398071
Epoch #208: loss=1.5125001668930054
Epoch #209: loss=1.7213644981384277
Epoch #210: loss=0.2566981017589569
Epoch #211: loss=0.9144943952560425
Epoch #212: loss=0.5890841484069824
Epoch #213: loss=1.6019794940948486
Epoch #214: loss=0.4071950614452362
Epoch #215: loss=0.21256153285503387
Epoch #216: loss=0.46447017788887024
Epoch #217: loss=0.847535252571106
Epoch #218: loss=0.3173595368862152
Epoch #219: loss=2.035677194595337
Epoch #220: loss=1.4657407999038696
Epoch #221: loss=0.2819652259349823
Epoch #222: loss=1.796709418296814
Epoch #223: loss=1.6974245309829712
Epoch #224: loss=2.1417956352233887
Epoch #225: loss=2.3179121017456055
Epoch #226: loss=0.8535065054893494
Epoch #227: loss=1.9375617504119873
Epoch #228: loss=0.9095024466514587
Epoch #229: loss=0.06460131704807281
Epoch #230: loss=0.6540948152542114
Epoch #231: loss=1.7740761041641235
Epoch #232: loss=0.24993574619293213
Epoch #233: loss=2.1773359775543213
Epoch #234: loss=1.7288787364959717
Epoch #235: loss=2.474510908126831
Epoch #236: loss=0.40895190834999084
Epoch #237: loss=0.8975251913070679
Epoch #238: loss=1.9124987125396729
Epoch #239: loss=0.31595349311828613
Epoch #240: loss=1.6041923761367798
Epoch #241: loss=0.39015093445777893
Epoch #242: loss=1.5581055879592896
Epoch #243: loss=1.6563081741333008
Epoch #244: loss=0.16322439908981323
Epoch #245: loss=1.2207903861999512
Epoch #246: loss=2.9476864337921143
Epoch #247: loss=1.7184042930603027
Epoch #248: loss=0.8880789279937744
Epoch #249: loss=2.464463233947754
Epoch #250: loss=1.4339537620544434
Epoch #251: loss=2.343587636947632
Epoch #252: loss=0.2167087346315384
Epoch #253: loss=2.0566253662109375
Epoch #254: loss=0.6035404205322266
Epoch #255: loss=0.5820797681808472
Epoch #256: loss=0.9254056215286255
Epoch #257: loss=1.5043821334838867
Epoch #258: loss=0.3230787515640259
Epoch #259: loss=1.2766642570495605
Epoch #260: loss=0.7327322959899902
Epoch #261: loss=1.6344150304794312
Epoch #262: loss=0.6551443934440613
Epoch #263: loss=1.8504363298416138
Epoch #264: loss=0.34357985854148865
Epoch #265: loss=1.4138588905334473
Epoch #266: loss=3.0337491035461426
Epoch #267: loss=0.6486119627952576
Epoch #268: loss=0.281491219997406
Epoch #269: loss=0.3460187613964081
Epoch #270: loss=0.5101308226585388
Epoch #271: loss=2.269306182861328
Epoch #272: loss=0.1753797084093094
Epoch #273: loss=1.742501139640808
Epoch #274: loss=2.3103134632110596
Epoch #275: loss=1.7549219131469727
Epoch #276: loss=1.3660094738006592
Epoch #277: loss=1.8996219635009766
Epoch #278: loss=2.0277163982391357
Epoch #279: loss=0.13503405451774597
Epoch #280: loss=0.2750321626663208
Epoch #281: loss=1.7827608585357666
Epoch #282: loss=0.9657294154167175
Epoch #283: loss=0.14420299232006073
Epoch #284: loss=0.43025508522987366
Epoch #285: loss=0.9684625267982483
Epoch #286: loss=0.9869248867034912
Epoch #287: loss=2.1642005443573
Epoch #288: loss=2.8372819423675537
Epoch #289: loss=0.9100130796432495
Epoch #290: loss=1.8948607444763184
Epoch #291: loss=0.7979612946510315
Epoch #292: loss=0.407267302274704
Epoch #293: loss=0.2789399027824402
Epoch #294: loss=0.594750165939331
Epoch #295: loss=0.31813234090805054
Epoch #296: loss=0.4587000608444214
Epoch #297: loss=1.549623966217041
Epoch #298: loss=0.22785796225070953
Epoch #299: loss=1.267681360244751
Epoch #300: loss=0.8269481062889099
Epoch #301: loss=2.281564235687256
Epoch #302: loss=2.1767125129699707
Epoch #303: loss=0.29364442825317383
Epoch #304: loss=0.7147272229194641
Epoch #305: loss=0.475722074508667
Epoch #306: loss=1.8736704587936401
Epoch #307: loss=0.539405107498169
Epoch #308: loss=0.421143114566803
Epoch #309: loss=1.8332371711730957
Epoch #310: loss=0.5181759595870972
Epoch #311: loss=1.6222501993179321
Epoch #312: loss=0.5307199954986572
Epoch #313: loss=0.20246522128582
Epoch #314: loss=1.8897727727890015
Epoch #315: loss=1.4566409587860107
Epoch #316: loss=0.9470361471176147
Epoch #317: loss=2.2462244033813477
Epoch #318: loss=0.29310765862464905
Epoch #319: loss=0.08955278992652893
Epoch #320: loss=0.4041380286216736
Epoch #321: loss=1.5549452304840088
Epoch #322: loss=0.4232368767261505
Epoch #323: loss=1.9662050008773804
Epoch #324: loss=2.026962995529175
Epoch #325: loss=0.3512367904186249
Epoch #326: loss=1.8779866695404053
Epoch #327: loss=0.9194939136505127
Epoch #328: loss=0.24815647304058075
Epoch #329: loss=1.857763409614563
Epoch #330: loss=0.12801767885684967
Epoch #331: loss=0.7122572064399719
Epoch #332: loss=0.4121319055557251
Epoch #333: loss=0.1657179594039917
Epoch #334: loss=1.3411868810653687
Epoch #335: loss=2.7996017932891846
Epoch #336: loss=0.3105979561805725
Epoch #337: loss=0.5005200505256653
Epoch #338: loss=0.5530526638031006
Epoch #339: loss=1.3747819662094116
Epoch #340: loss=1.3852190971374512
Epoch #341: loss=0.1420324146747589
Epoch #342: loss=0.9886403679847717
Epoch #343: loss=0.3591509759426117
Epoch #344: loss=0.14386731386184692
Epoch #345: loss=0.39427056908607483
Epoch #346: loss=0.45581701397895813
Epoch #347: loss=1.8101803064346313
Epoch #348: loss=1.5546438694000244
Epoch #349: loss=0.5318559408187866
Epoch #350: loss=0.7634114027023315
Epoch #351: loss=0.7869696617126465
Epoch #352: loss=0.1881377100944519
Epoch #353: loss=0.13070739805698395
Epoch #354: loss=0.07656843215227127
Epoch #355: loss=2.6800763607025146
Epoch #356: loss=0.8125490546226501
Epoch #357: loss=0.16149428486824036
Epoch #358: loss=0.8381452560424805
Epoch #359: loss=1.0297962427139282
Epoch #360: loss=0.36076676845550537
Epoch #361: loss=1.3948079347610474
Epoch #362: loss=0.5667166113853455
Epoch #363: loss=1.571798324584961
Epoch #364: loss=1.8977797031402588
Epoch #365: loss=0.25602826476097107
Epoch #366: loss=0.4749661087989807
Epoch #367: loss=0.21793435513973236
Epoch #368: loss=1.83305823802948
Epoch #369: loss=0.152022123336792
Epoch #370: loss=1.8511078357696533
Epoch #371: loss=0.16700899600982666
Epoch #372: loss=0.6117182970046997
Epoch #373: loss=1.2634512186050415
Epoch #374: loss=1.5333821773529053
Epoch #375: loss=0.4898683428764343
Epoch #376: loss=1.4002727270126343
Epoch #377: loss=0.3089269995689392
Epoch #378: loss=0.2525637447834015
Epoch #379: loss=0.9112695455551147
Epoch #380: loss=0.37020739912986755
Epoch #381: loss=1.561721920967102
Epoch #382: loss=1.8956084251403809
Epoch #383: loss=0.13136976957321167
Epoch #384: loss=0.35678476095199585
Epoch #385: loss=1.0575536489486694
Epoch #386: loss=2.234762191772461
Epoch #387: loss=1.8859763145446777
Epoch #388: loss=2.1435632705688477
Epoch #389: loss=0.07174868881702423
Epoch #390: loss=1.074748158454895
Epoch #391: loss=0.7110905051231384
Epoch #392: loss=0.11850021779537201
Epoch #393: loss=2.0871171951293945
Epoch #394: loss=0.6785221099853516
Epoch #395: loss=0.3400878310203552
Epoch #396: loss=1.4816581010818481
Epoch #397: loss=0.11094460636377335
Epoch #398: loss=1.2424418926239014
Epoch #399: loss=1.4763576984405518
Epoch #400: loss=0.3789987862110138
Epoch #401: loss=1.4704704284667969
Epoch #402: loss=0.6541924476623535
Epoch #403: loss=0.28912636637687683
Epoch #404: loss=0.3377803564071655
Epoch #405: loss=0.16367194056510925
Epoch #406: loss=2.4543027877807617
Epoch #407: loss=0.15767869353294373
Epoch #408: loss=0.30323851108551025
Epoch #409: loss=0.5279679298400879
Epoch #410: loss=1.2090271711349487
Epoch #411: loss=0.0924176499247551
Epoch #412: loss=1.098695158958435
Epoch #413: loss=1.506590723991394
Epoch #414: loss=0.08520447462797165
Epoch #415: loss=0.5030895471572876
Epoch #416: loss=1.7879304885864258
Epoch #417: loss=0.21568650007247925
Epoch #418: loss=0.320415198802948
Epoch #419: loss=1.8248441219329834
Epoch #420: loss=2.2942399978637695
Epoch #421: loss=0.4196263253688812
Epoch #422: loss=0.19703568518161774
Epoch #423: loss=0.5401408076286316
Epoch #424: loss=0.5140830278396606
Epoch #425: loss=1.8149387836456299
Epoch #426: loss=1.7494431734085083
Epoch #427: loss=2.4270195960998535
Epoch #428: loss=0.8476335406303406
Epoch #429: loss=1.6283448934555054
Epoch #430: loss=1.6591260433197021
Epoch #431: loss=1.052864909172058
Epoch #432: loss=0.11138763278722763
Epoch #433: loss=0.21038000285625458
Epoch #434: loss=2.2257256507873535
Epoch #435: loss=0.4023648798465729
Epoch #436: loss=0.10641679167747498
Epoch #437: loss=3.3672454357147217
Epoch #438: loss=3.710552215576172
Epoch #439: loss=0.11378413438796997
Epoch #440: loss=1.7283804416656494
Epoch #441: loss=1.4820828437805176
Epoch #442: loss=1.590983271598816
Epoch #443: loss=1.349128007888794
Epoch #444: loss=1.8179763555526733
Epoch #445: loss=0.75531405210495
Epoch #446: loss=1.085890531539917
Epoch #447: loss=0.29359757900238037
Epoch #448: loss=0.7988812923431396
Epoch #449: loss=0.6155299544334412
Epoch #450: loss=0.9185734987258911
Epoch #451: loss=1.7599767446517944
Epoch #452: loss=0.42491453886032104
Epoch #453: loss=0.22349315881729126
Epoch #454: loss=0.6483134031295776
Epoch #455: loss=0.4272352457046509
Epoch #456: loss=0.10839521884918213
Epoch #457: loss=0.30074331164360046
Epoch #458: loss=1.8364195823669434
Epoch #459: loss=0.23057715594768524
Epoch #460: loss=0.6182584762573242
Epoch #461: loss=1.227605938911438
Epoch #462: loss=0.24666038155555725
Epoch #463: loss=1.034490704536438
Epoch #464: loss=0.3146103322505951
Epoch #465: loss=0.07196919620037079
Epoch #466: loss=0.2863925099372864
Epoch #467: loss=1.0465977191925049
Epoch #468: loss=0.28704503178596497
Epoch #469: loss=1.4844039678573608
Epoch #470: loss=0.14873594045639038
Epoch #471: loss=0.4362087547779083
Epoch #472: loss=0.7159433364868164
Epoch #473: loss=0.16145847737789154
Epoch #474: loss=0.3323346972465515
Epoch #475: loss=0.4644119441509247
Epoch #476: loss=1.290858268737793
Epoch #477: loss=0.36944448947906494
Epoch #478: loss=0.8566645383834839
Epoch #479: loss=0.5330311059951782
Epoch #480: loss=1.426927924156189
Epoch #481: loss=0.6670281887054443
Epoch #482: loss=1.5495120286941528
Epoch #483: loss=0.25497597455978394
Epoch #484: loss=1.844478726387024
Epoch #485: loss=0.1516546607017517
Epoch #486: loss=1.8455555438995361
Epoch #487: loss=0.29361361265182495
Epoch #488: loss=2.034301280975342
Epoch #489: loss=0.17551353573799133
Epoch #490: loss=1.6362613439559937
Epoch #491: loss=0.10564213246107101
Epoch #492: loss=0.1623721718788147
Epoch #493: loss=1.5093203783035278
Epoch #494: loss=1.4460903406143188
Epoch #495: loss=1.2748160362243652
Epoch #496: loss=0.2859782874584198
Epoch #497: loss=0.38636037707328796
Epoch #498: loss=1.5152920484542847
Epoch #499: loss=1.397377371788025
Epoch #500: loss=0.1694691777229309
Epoch #501: loss=0.351042240858078
Epoch #502: loss=0.14991268515586853
Epoch #503: loss=1.6031996011734009
Epoch #504: loss=1.4891612529754639
Epoch #505: loss=0.17222560942173004
Epoch #506: loss=2.019444704055786
Epoch #507: loss=0.35872405767440796
Epoch #508: loss=1.484838604927063
Epoch #509: loss=1.5404322147369385
Epoch #510: loss=0.15163502097129822
Epoch #511: loss=1.0892196893692017
Epoch #512: loss=0.29840198159217834
Epoch #513: loss=0.24310889840126038
Epoch #514: loss=1.6251174211502075
Epoch #515: loss=0.12575948238372803
Epoch #516: loss=0.8005720973014832
Epoch #517: loss=1.75771164894104
Epoch #518: loss=0.3810301125049591
Epoch #519: loss=0.3282615542411804
Epoch #520: loss=1.3336328268051147
Epoch #521: loss=0.7208656072616577
Epoch #522: loss=0.3675725758075714
Epoch #523: loss=1.8528059720993042
Epoch #524: loss=1.3931912183761597
Epoch #525: loss=0.5536489486694336
Epoch #526: loss=0.15418536961078644
Epoch #527: loss=1.6382719278335571
Epoch #528: loss=0.875055730342865
Epoch #529: loss=2.343893527984619
Epoch #530: loss=0.09188349545001984
Epoch #531: loss=2.097029447555542
Epoch #532: loss=0.19687160849571228
Epoch #533: loss=0.3062199056148529
Epoch #534: loss=2.0958709716796875
Epoch #535: loss=0.32636699080467224
Epoch #536: loss=2.1331639289855957
Epoch #537: loss=0.8831706047058105
Epoch #538: loss=0.5683028697967529
Epoch #539: loss=1.3999990224838257
Epoch #540: loss=0.054359398782253265
Epoch #541: loss=0.2002534717321396
Epoch #542: loss=0.11584816873073578
Epoch #543: loss=1.3021857738494873
Epoch #544: loss=0.21184641122817993
Epoch #545: loss=0.9179627299308777
Epoch #546: loss=0.7943434715270996
Epoch #547: loss=1.4534341096878052
Epoch #548: loss=0.21685576438903809
Epoch #549: loss=1.804957389831543
Epoch #550: loss=2.284461498260498
Epoch #551: loss=1.7182847261428833
Epoch #552: loss=0.1203448474407196
Epoch #553: loss=0.9660184383392334
Epoch #554: loss=0.09705537557601929
Epoch #555: loss=0.2338482141494751
Epoch #556: loss=1.6553668975830078
Epoch #557: loss=0.3037290871143341
Epoch #558: loss=1.1282017230987549
Epoch #559: loss=0.8381887078285217
Epoch #560: loss=1.421316146850586
Epoch #561: loss=1.778821349143982
Epoch #562: loss=1.0033754110336304
Epoch #563: loss=0.9240103960037231
Epoch #564: loss=1.1648085117340088
Epoch #565: loss=1.7783876657485962
Epoch #566: loss=0.5128293037414551
Epoch #567: loss=1.6350429058074951
Epoch #568: loss=0.2389991134405136
Epoch #569: loss=0.6070981621742249
Epoch #570: loss=0.11665422469377518
Epoch #571: loss=1.7566410303115845
Epoch #572: loss=0.12478676438331604
Epoch #573: loss=1.0439121723175049
Epoch #574: loss=0.05703584849834442
Epoch #575: loss=1.7145496606826782
Epoch #576: loss=0.7712246179580688
Epoch #577: loss=0.358727365732193
Epoch #578: loss=1.2102539539337158
Epoch #579: loss=0.40819376707077026
Epoch #580: loss=1.4205913543701172
Epoch #581: loss=0.1705171763896942
Epoch #582: loss=0.6758912205696106
Epoch #583: loss=0.09855835139751434
Epoch #584: loss=0.22721177339553833
Epoch #585: loss=0.19271118938922882
Epoch #586: loss=0.42733317613601685
Epoch #587: loss=0.6790026426315308
Epoch #588: loss=0.14023324847221375
Epoch #589: loss=0.16466084122657776
Epoch #590: loss=0.21996325254440308
Epoch #591: loss=1.0743025541305542
Epoch #592: loss=0.27322351932525635
Epoch #593: loss=0.1624365746974945
Epoch #594: loss=0.7956072688102722
Epoch #595: loss=0.07555535435676575
Epoch #596: loss=2.2748093605041504
Epoch #597: loss=2.032555103302002
Epoch #598: loss=0.05262380465865135
Epoch #599: loss=0.3489914834499359
Training time: 0:06:46.139698
Evaluation result: {'ours': {24: {'norm': {'MSE': 0.6712022097597823, 'MAE': 0.6298785035442218}, 'raw': {'MSE': 14.672419055347461, 'MAE': 2.411799145891094}}, 48: {'norm': {'MSE': 0.7119976694652735, 'MAE': 0.649215917576891}, 'raw': {'MSE': 15.703313804830877, 'MAE': 2.492265101674151}}, 168: {'norm': {'MSE': 0.8421198260449353, 'MAE': 0.7075989958089053}, 'raw': {'MSE': 17.201471636191393, 'MAE': 2.6339053946168525}}, 336: {'norm': {'MSE': 0.9783082661529101, 'MAE': 0.7703271602675434}, 'raw': {'MSE': 18.03709250905952, 'MAE': 2.7503146680246275}}, 720: {'norm': {'MSE': 1.1202768126045624, 'MAE': 0.8425831442248162}, 'raw': {'MSE': 18.93645978631521, 'MAE': 2.93128735386568}}}, 'encoder_infer_time': 6.251052379608154, 'lr_train_time': {24: 2.3134589195251465, 48: 2.5383174419403076, 168: 3.2391586303710938, 336: 5.604488372802734, 720: 8.689801454544067}, 'lr_infer_time': {24: 0.006848573684692383, 48: 0.009593009948730469, 168: 0.016357898712158203, 336: 0.042142391204833984, 720: 0.1010274887084961}}
Finished.