-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPM25_R_code.R
264 lines (183 loc) · 8.77 KB
/
PM25_R_code.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
rm(list=ls())
`%notin%` <- Negate(`%in%`)
library(readxl)
library(tidyverse)
library(boot)
library(ggthemes)
library(gridExtra)
library(forecast)
library(data.table)
library(GGally)
dfpoll_orig <- read.csv('data_alltimepm25.csv')
dfpoll_orig$date <- as.Date(dfpoll_orig$date)
state_policy<- read.csv('state_policy_changes_1.csv')
state_policy <- state_policy %>% filter(State %notin% c('District of Columbia', 'Total with each policy (out of 51 with DC)'))
confounders_daily <- read.csv('confounders_all.csv')
confounders_daily$date <- as.Date(confounders_daily$date)
#################################################
## Select data before April 29, 2020 (inclusive)
## for all datasets
#################################################
maxdate ='2020-04-29'
#################################################
## INPUT PARAMETERS
#################################################
## train data
ldate <- as.Date("2020-01-01")
nweekspred = 16 # # of weeks to predict on
udate <- (ldate+7*nweekspred) # date to predict until
start.time <- Sys.time()
#################################################
## RUN THE LOOP
#################################################
dfs_tosave = list()
p = list()
i=1
for (state_fullname in unique(state_policy$State)){
if (state_fullname=='Alaska'){next}
#################################################
## DATA WRANGLING
#################################################
# get abbreviated name
state_name = state.abb[which(state.name == state_fullname)]
if (state_name %notin% unique(dfpoll_orig$state)) {next}
# get date of state of emergency
soe= as.Date(state_policy$State.of.emergency[state_policy$State == state_fullname], format= '%m/%d/%Y')
dfpoll <- dfpoll_orig %>% filter (state==state_name) %>% group_by(date) %>% summarise(pm25 = mean(pm25))
## fill missing dates in poll data
dfpoll<-dfpoll %>%
complete(date = seq.Date(min(date), max(date), by="day")) %>%
fill('pm25') %>% filter( date < as.Date(maxdate))
cat("State = ", state_fullname," ")
if (nrow(dfpoll)<1940) {print("next ")
next}
## fill missing dates in confounders data
conf_state <- confounders_daily %>% filter(stateabbr == state_name)%>% filter( date < as.Date(maxdate)) %>%
complete(date = seq.Date(min(date), max(date), by="day")) %>%
fill('tmmx','pr','rmax')
# will be used below to take weekly averages of confounders
# and train and test data
n=7 ## average every seven rows
m = (nrow(dfpoll)%/%n)*n
## take avg every n days. This will reduce the length of
# the time series by a factor of n
dfweek <- setDT(dfpoll[1:m,])[,.(pm25=mean(pm25)), date-0:(n-1)]
dfweek$idx <- seq(1, nrow(dfweek))
# ggplot(data = dfweek, aes(x=date, y=pm25, group=1)) + geom_line()
## take avg every n days for confounders.
temp_week <- setDT(conf_state[1:m,])[,.(temp = mean(tmmx)), date-0:(n-1)]
ppt_week <- setDT(conf_state[1:m,])[,.(ppt = mean(pr)), date-0:(n-1)]
hum_week <- setDT(conf_state[1:m,])[,.(hum = mean(rmax)), date-0:(n-1)]
xregs <- cbind(temp_week, ppt_week$ppt, hum_week$hum)
colnames(xregs) <- c('date','temp','ppt','hum')
train = dfweek %>% filter(date<ldate) # ldate not included
train$idx <- seq(1, nrow(train))
xregs_train <- xregs %>% filter(date<ldate) # ldate not included
xregs_train <- xregs_train[c('temp','ppt','hum')]
xregs_train <- as.matrix(xregs_train)
## test data from poll
test = dfweek %>% filter(date>=ldate & date <udate)## include ldate and filter(date>=ldate & date <udate)
## test data for confounders
xregs_test <- xregs %>% filter(date>=ldate & date <udate)
xregs_test <- xregs_test[c('temp','ppt','hum')]
xregs_test <- as.matrix(xregs_test)
ts=ts(train$pm25)
num_resamples=1000
sim <- bld.mbb.bootstrap(ts, num_resamples)
preds = matrix(list(), nrow=num_resamples)
for (j in seq(1, length(sim))) {
model = auto.arima(sim[[j]], xreg = as.matrix(xregs_train), max.p = 100, max.q = 100, max.P = 100, max.Q = 100)
forecast = forecast(model,h = nweekspred, xreg = xregs_test,level = 0.95)
preds[[j]] = forecast$mean
}
preds = as.data.frame(preds)
sd_pred = apply(preds,1,sd)
mean_pred = apply(preds,1,mean)
mean_diff = test$pm25-mean_pred
lower = mean_diff-1.96*sd_pred
upper = mean_diff + 1.96*sd_pred
### plot with error bars
df_diff <- as.data.frame(cbind(mean_diff, sd_pred))
df_diff$date <- as.Date(test$date)
p[[i]] = ggplot(df_diff, aes(x=date, y=mean_diff,color='red')) +
geom_line(linetype = 'solid', size = 1.5) +
geom_vline(xintercept = soe, color='lightblue', size=1.5)+
geom_hline(yintercept = 0)+
geom_point(size=3)+
theme(axis.title=element_blank())+
## to only show 0 label on yaxis
scale_y_continuous(breaks=seq(-10, 10, 10)) +
## to show months as first letter only
scale_x_date("Date",breaks = c(seq(from=as.Date("2020-01-01"),
to=as.Date("2020-04-30"),by="month")),
labels = c('J','F','M','A')) +
geom_errorbar(data=df_diff, aes(ymin=mean_diff-1.96*sd_pred, ymax=mean_diff+1.96*sd_pred), width=1,color='black',
position=position_dodge(0.05), size=1) +
ggtitle(paste(state_name))+
# ggtitle(paste(state_name," (2020)", sep=""))+
# ggtitle(paste("Difference between predicted and actual PM2.5 levels (", state_name,")\n (2020)", sep=""))+
theme_classic()+
theme(plot.title = element_text(hjust = 0.5))+
theme(axis.text = element_text(size = 14), axis.title = element_text(size = 14))+theme(legend.position = "none")
dfs_tosave[[i]] = df_diff
i = i+1
}
end.time <- Sys.time()
end.time - start.time
########################
# SAVING BEGINS
########################
allplots <- marrangeGrob(p, nrow=2, ncol=1)
ggsave("../pm25plots.pdf", allplots)
############################################
## AFTER LOADING THE DATASET YOU CAN MAKE PLOTS
################################################
ps <- paste('p[[',1:length(p),']]', sep='', collapse=',')
library(cowplot)
#########################
for (i in seq(1,length(p))){
p[[i]] = p[[i]] + theme(axis.title=element_blank())
}
plot <- plot_grid(p[[1]],p[[2]],p[[3]],p[[4]],p[[5]],p[[6]],p[[7]],p[[8]],p[[9]],p[[10]],
p[[11]],p[[12]],p[[13]],p[[14]],p[[15]],p[[16]],p[[17]],p[[18]],p[[19]],p[[20]],
p[[21]],p[[22]],p[[23]],p[[24]],p[[25]],p[[26]],p[[27]],p[[28]],p[[29]],p[[30]],
p[[31]],p[[32]],p[[33]],p[[34]],p[[35]],p[[36]],p[[37]],p[[38]],p[[39]],p[[40]],
p[[41]],p[[42]],p[[43]],p[[44]],p[[45]],p[[46]],p[[47]],p[[48]])
library(grid)
y.grob <- textGrob(expression(paste("Difference between actual and predicted PM2.5 concentrations ( ",mu, "g/",m^3,")")),
gp=gpar(fontface="bold", fontsize=15), rot=90)
grid.arrange(arrangeGrob(plot, left = y.grob))
################################################
## TO MAKE BOXPLOTS
################################################
df_box <- dfs_tosave[[1]]
df_box$state <- p[[1]]$labels$title
df_box$period <- ifelse(df_box$date<as.Date(p[[1]]$layers[[2]]$data$xintercept), 'before','after')
df_box$period <- factor(df_box$period, levels = c("before",'after'))
for (i in 2:length(p)){
dffill <- dfs_tosave[[i]]
dffill$state <- p[[i]]$labels$title
dffill$period <- ifelse(dffill$date<as.Date(p[[i]]$layers[[2]]$data$xintercept), 'before','after')
df_box <- rbind(df_box, dffill)
}
ggplot(df_box, aes(x=state, y=mean_diff, fill=period)) +
geom_boxplot(alpha= 0.5,position=position_dodge(0), outlier.shape = "") +
theme_classic()+
geom_hline(yintercept = 0, linetype = 'dashed')+
labs(y = expression(paste("Difference between actual and\n predicted PM2.5 concentrations ( ",mu, "g/",m^3,")")))+
theme(axis.title.x = element_blank()) +
theme(plot.margin = unit(c(0.1, 0.1, 0.2, 0.4), "cm")) #top, right, bottom, left
##########################################
##########################################
## CALCULATE MEDIAN CHANGE FOR EACH STATE
##########################################
##########################################
df_change <- df_box %>% group_by(state, period) %>%
summarise(median_diff = median(mean_diff)) %>%
spread(period, median_diff)
df_meanchange_pm25 <- df_box %>% group_by(state, period) %>%
summarise(mean_diff = mean(mean_diff)) %>%
spread(period, mean_diff)
df_meanchange_pm25$meandiffbefore_after <- df_meanchange_pm25$before - df_meanchange_pm25$after
write.csv(df_meanchange_pm25, '../df_meanchange_pm25.csv')
write.csv(df_change, '../df_change_pm25.csv')