This pipeline analyses CNS tumour data generated through Nanopore adaptive sequencing using ReadFish or adaptive sampling on MinKNOW. It requires FAST5 files or FASTQ file generated from the sequencing run as input.
Sequencing
Sequencing using ReadFish on a MinION device is recommended on a workstation/notebook powered by a NVIDIA RTX2080 GPU.
Instructions (from ReadFish)
- Install ReadFish
# Make a virtual environment
python3 -m venv readfish
. ./readfish/bin/activate
pip install --upgrade pip
# Install our ReadFish Software
pip install git+https://github.com/LooseLab/read_until_api_v2@master
pip install git+https://github.com/LooseLab/readfish@master
- Download and edit the
reference
field inread_until.toml
- Load the flowcell and start sequencing on MinKNOW
- Open terminal and start
guppy_basecall_server
guppy_basecall_server --config dna_r9.4.1_450bps_fast.cfg --port 5555 --device "cuda:0" --qscore_filtering
- Open new tab in terminal and run ReadFish
readfish targets --device <YOUR_DEVICE_ID> \
--experiment-name "RU Test basecall and map" \
--toml <PATH_TO_TOML> \
--log-file ru_test.log
You should get outputs as
2020-02-24 16:45:35,677 ru.ru_gen 7R/0.03526s
2020-02-24 16:45:35,865 ru.ru_gen 3R/0.02302s
2020-02-24 16:45:35,965 ru.ru_gen 4R/0.02249s
If these times > 0.4s, targeting is not working as expected.
RAPID-CNS2 analysis
- If you do not have an existing conda installation, follow these steps. If you have conda preinstalled, skip to step 2.
- Download the appropriate Miniconda installer here
- Open terminal, go to directory containing the Miniconda file. Enter
bash Miniconda3-latest-Linux-x86_64.sh
- Install snakemake
conda install -n base -c conda-forge mamba
conda activate base
mamba create -c conda-forge -c bioconda -n snakemake snakemake
conda activate snakemake
- Install CNVpytor
git clone https://github.com/abyzovlab/CNVpytor.git
cd CNVpytor
pip install .
- Download GPU version of guppy here (Registration required)
- Unpack the tar file (xxx is the version e.g. 4.2.2)
tar -xf ont-guppy_xxx_linux<64 or aarch64>.tar.gz
-
Download singularity images for PEPPER-Margin-DeepVariant
singularity pull docker://kishwars/pepper_deepvariant:r0.4
. -
Download ANNOVAR here
-
Download Rapid-CNS2 Git repo
git clone https://github.com/areebapatel/Rapid_CNS2.git
-
Edit
rapid_cns_snake.yaml
to specify paths -
Run pipeline as
snakemake --use-conda --config FAST5_dir=<path to FAST5 files> outdir=<path to output directory for library> <output file eg. (sample)_cnvpytor_100k.png>
Requirements
- Reference genome hg19 and hg38 FASTA
- ANNOVAR database.
annotate_variation.pl -buildver hg19 -downdb -webfrom annovar refGene humandb/
annotate_variation.pl -buildver hg19 -downdb cytoBand humandb/
annotate_variation.pl -buildver hg19 -downdb -webfrom annovar exac03 humandb/
annotate_variation.pl -buildver hg19 -downdb -webfrom annovar avsnp147 humandb/
annotate_variation.pl -buildver hg19 -downdb -webfrom annovar dbnsfp30a humandb/
Citation
If you use this pipeline, please cite:
Patel, A., Dogan, H., Payne, A. et al. Rapid-CNS2: rapid comprehensive adaptive nanopore-sequencing of CNS tumors, a proof-of-concept study. Acta Neuropathol (2022). https://doi.org/10.1007/s00401-022-02415-6