-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation_hydro1_changed.py
615 lines (434 loc) · 15.6 KB
/
simulation_hydro1_changed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#!/usr/bin/env python
# coding: utf-8
# ### SELM via PyLAMMPs for Simulations
# Author: Paul Atzberger <br>
# http://atzberger.org/
#
# In[1]:
import os;
script_base_name = "simulation_hydro1";
script_dir = os.getcwd();
# In[2]:
# import the lammps module
try:
from selm_lammps.lammps import IPyLammps # use this for the pip install of pre-built package
lammps_import_comment = "from selm_lammps.lammps import IPyLammps";
from selm_lammps import util as atz_util;
except Exception as e:
from lammps import IPyLammps # use this for direct install of package
lammps_import_comment = "from lammps import IPyLammps";
from atz_lammps import util as atz_util;
except Exception as e: # if fails to import, report the exception
print(e);
lammps_import_comment = "import failed";
import numpy as np;
import matplotlib;
import matplotlib.pyplot as plt;
import sys,shutil,pickle,pdb;
import logging;
# ### Setup SELM Simulation
# In[3]:
# @base_dir
base_dir_output = '%s/output/%s'%(script_dir,script_base_name);
atz_util.create_dir(base_dir_output);
dir_run_name = 'hydro';
base_dir = '%s/%s_test001'%(base_dir_output,dir_run_name);
# remove all data from dir
atz_util.rm_dir(base_dir);
# setup the directories
base_dir_fig = '%s/fig'%base_dir;
atz_util.create_dir(base_dir_fig);
base_dir_vtk = '%s/vtk'%base_dir;
atz_util.create_dir(base_dir_vtk);
# setup logging
atzLog = atz_util.AtzLogging(print,base_dir);
print_log = atzLog.print_log;
# print the import comment
print_log(lammps_import_comment);
# change directory for running LAMMPS in output
print_log("For running LAMMPS changing the current working directory to:\n%s"%base_dir);
os.chdir(base_dir); # base the current working directory
#os.chdir(script_dir); # base the current working directory
# ### Setup LAMMPs
# In[4]:
L = IPyLammps();
atz_util.print_version_info(L);
# ### Copy files to the output directory
# In[5]:
# copy the model files to the destination
src = script_dir + '/' + "Model1";
dst = base_dir + '/';
atz_util.copytree2(src,dst,symlinks=False,ignore=None);
print_log("Model files being copied:\n" + "src = " + str(src) + "\n" + "dst = " + str(dst));
# In[6]:
flag_copy_notebook_to_output = True;
if flag_copy_notebook_to_output:
#cur_dir = os.getcwd();
#src = cur_dir + '/' + script_base_name + '.ipynb';
src = script_dir + '/' + script_base_name + '.ipynb';
dst = base_dir + '/' + 'archive__' + script_base_name + '.ipynb';
shutil.copyfile(src, dst);
print_log("Copying notebook to archive:\n" + "src = " + str(src) + "\n" + "dst = " + str(dst));
# # Common Physical Parameters (nano units)
# In[7]:
# Reference units and parameters
units = {'name':'nano','mu':1.0,'rho':0.001,
'KB':0.01380651,'T':298.15};
units.update({'KBT':units['KB']*units['T']});
# Set up Lammps
# ### Setup the Model and Simulation Files (such as .read_data)
# In[8]:
num_dim = 3;
box = np.zeros((num_dim,2));
LL = 202.5; box[:,0] = -LL; box[:,1] = LL;
# setup atoms
I_id = 1; I_type = 1; atom_types = [];
atom_list = []; atom_mass_list = []; atom_id_list = [];
atom_mol_list = []; atom_name_list = [];
# structure atoms
atom_name = "structure_pts";
atom_name_list.append(atom_name);
atom_types.append(I_type);
# number of atoms in observation
num_pts = 2;
x1 = np.array([-100,100]);
x2 = np.array([0,0]);
x3 = np.array([0,0]);
x = np.stack((x1,x2,x3),axis=1); # shape = [num_pts,num_dim]
num_pts = x.shape[0]; m0 = 1.123;
atom_id = np.arange(I_id + 0,I_id + num_pts,dtype=int);
mol_id = 1; atom_mol = np.ones(num_pts,dtype=int)*mol_id;
atom_list.append(x); atom_mass_list.append(m0);
atom_id_list.append(atom_id); atom_mol_list.append(atom_mol);
I_type += 1; I_id += num_pts;
print_log("atom_name = " + str(atom_name));
print_log("num_pts = " + str(num_pts));
#number of obstacle points 11*11=121
#num_pts = 11;
#x1_raw= np.linspace(-200,200,num_pts,endpoint=True)#x1 = np.array([-100,100]);
#x1=np.tile(x1_raw,num_pts)
#x2_raw= np.linspace(-200,200,num_pts,endpoint=True)
#x2=np.tile(x1_raw,num_pts)#x2= np.linspace(-200,200,num_pts,endpoint=True)#x2 = np.array([0,0]);
#x3=np.zeros(num_pts**2);#x3 = np.array([0,0]);
#x = np.stack((x1,x2,x3),axis=1); # shape = [num_pts,num_dim]
#num_pts = x.shape[0]; m0 = 1.123;
#atom_id = np.arange(I_id + 0,I_id + num_pts,dtype=int);
#mol_id = 2; atom_mol = np.ones(num_pts,dtype=int)*mol_id;
#atom_list.append(x); atom_mass_list.append(m0);
#atom_id_list.append(atom_id); atom_mol_list.append(atom_mol);
#I_type += 1; I_id += num_pts;
#print_log("atom_name = " + str(atom_name));
#print_log("num_pts = " + str(num_pts));
# tracer atoms
flag_tracer = True;
if flag_tracer:
atom_name = "tracer_pts";
atom_name_list.append(atom_name);
atom_types.append(I_type);
atom_types[I_type - 1] = I_type;
num_pts_dir = 10; m0 = 1.123;
x1 = np.linspace(-LL,LL,num_pts_dir + 1,endpoint=False); dx = x1[1] - x1[0];
x1 = x1 + 0.5*dx;
xx = np.meshgrid(x1,x1,x1);
x = np.stack((xx[0].flatten(),xx[1].flatten(),xx[2].flatten()),axis=1); # shape = [num_pts,num_dim]
#ipdb.set_trace();
num_pts = x.shape[0];
atom_id = np.arange(I_id + 0,I_id + num_pts,dtype=int);
mol_id = 2; atom_mol = np.ones(x.shape[0],dtype=int)*mol_id;
atom_list.append(x); atom_mass_list.append(m0);
atom_id_list.append(atom_id); atom_mol_list.append(atom_mol);
I_type += 1; I_id += num_pts;
print_log("atom_name = " + str(atom_name));
print_log("num_pts = " + str(num_pts));
# atoms serve as forcing terms
flag_force = True;
if flag_force:
atom_name = "forcing terms";
atom_name_list.append(atom_name);
atom_types.append(I_type);
atom_types[I_type - 1] = I_type;
num_pts_dir = 10; m0 = 1.123;
x1 = np.linspace(-LL,LL,num_pts_dir + 1,endpoint=False); dx = x1[1] - x1[0];
x1 = x1 + 0.3*dx;
xx = np.meshgrid(x1,x1,x1);
x = np.stack((xx[0].flatten(),xx[1].flatten(),xx[2].flatten()),axis=1); # shape = [num_pts,num_dim]
#ipdb.set_trace();
num_pts = x.shape[0];
atom_id = np.arange(I_id + 0,I_id + num_pts,dtype=int);
mol_id = 3; atom_mol = np.ones(x.shape[0],dtype=int)*mol_id;
atom_list.append(x); atom_mass_list.append(m0);
atom_id_list.append(atom_id); atom_mol_list.append(atom_mol);
I_type += 1; I_id += num_pts;
print_log("atom_name = " + str(atom_name));
print_log("num_pts = " + str(num_pts));
# summary data
# get total number of atoms
atom_types = np.array(atom_types,dtype=int);
num_atoms = I_id - 1; # total number of atoms
# setup bonds
I_id = 1; I_type = 1; bond_types = []; bond_name_list = [];
bond_list = []; bond_coeff_list = []; bond_id_list = [];
flag_bond_1 = False;
if flag_bond_1:
bond_types.append(I_type);
#bond_name_list.append("fene_1");
bond_name_list.append("harmonic_1");
KBT = units['KBT']; ell = 5.0; K = 0.5*KBT/(ell*ell); r0 = 20;
b = "harmonic %.7f %7f"%(K,r0);
print_log("bond:");
print_log("KBT = " + str(KBT)); print_log("r0 = " + str(r0));
print_log("bond coeff = " + str(b));
bond_coeff_list.append(b);
I0 = atz_util.atz_find_name(atom_name_list,"structure_pts"); I_atom_type = atom_types[I0];
atom_id = atom_id_list[I_atom_type - 1]; nn = atom_id.shape[0];
bonds = np.zeros((nn,2),dtype=int);
bond_id = np.zeros(bonds.shape[0],dtype=int);
for i in range(0,nn):
i1 = atom_id[i % nn]; i2 = atom_id[(i + 1)%nn]; # base 1 indexing, closed loop
bonds[i,0] = i1; bonds[i,1] = i2;
bond_id[i] = I_id;
I_id += 1;
bond_list.append(bonds); bond_id_list.append(bond_id);
I_type += 1;
# summary data
num_bonds = I_id - 1;
bond_types = np.array(bond_types,dtype=int);
# setup angles
I_id = 1; I_type =1 ; angle_types = []; angle_name_list = [];
angle_list = []; angle_coeff_list = []; angle_id_list = [];
flag_angles_1 = False;
if flag_angles_1:
angle_name_list.append("atom_type_1");
angle_types.append(I_type);
#KBT = 2478959.87; K = 10*KBT; theta_0 = 180.0; # degrees
KBT = units['KBT']; K = 5*KBT; theta_0 = 180.0; # degrees
b = "harmonic %.7f %.7f"%(K,theta_0);
angle_coeff_list.append(b);
# build angle bonds for type 1 atoms with type 1 atoms, closed loop
if flag_angles_1:
I0 = atz_util.atz_find_name(atom_name_list,"polymer_pts"); I_atom_type = atom_types[I0];
atom_id = atom_id_list[I_atom_type - 1]; nn = atom_id.shape[0];
angles = np.zeros((nn,3),dtype=int);
angle_id = np.zeros(angles.shape[0],dtype=int);
for i in range(0,nn):
i1 = atom_id[i]; i2 = atom_id[(i + 1)%nn]; i3 = atom_id[(i + 2)%nn]; # base 1 indexing
angles[i,0] = i1; angles[i,1] = i2; angles[i,2] = i3;
angle_id[i] = I_id; I_id += 1;
angle_list.append(angles); angle_id_list.append(angle_id);
I_type += 1;
# summary data
num_angles = I_id - 1;
angle_types = np.array(angle_types,dtype=int);
# store the model information
model_info = {};
model_info.update({'num_dim':num_dim,'box':box,'atom_types':atom_types,
'atom_list':atom_list,'atom_mass_list':atom_mass_list,'atom_name_list':atom_name_list,
'atom_id_list':atom_id_list,'atom_mol_list':atom_mol_list,
'bond_types':bond_types,'bond_list':bond_list,'bond_id_list':bond_id_list,
'bond_coeff_list':bond_coeff_list,'bond_name_list':bond_name_list,
'angle_types':angle_types,'angle_list':angle_list,'angle_id_list':angle_id_list,
'angle_coeff_list':angle_coeff_list,'angle_name_list':angle_name_list});
# In[9]:
# write .pickle data with the model setup information
filename = "model_setup.pickle";
print_log("Writing model data .pickle");
print_log("filename = " + filename);
s = model_info;
f = open(filename,'wb'); pickle.dump(s,f); f.close();
# write the model .read_data file for lammps
filename = "Model.LAMMPS_read_data";
print_log("Writing model data .read_data");
print_log("filename = " + filename);
atz_util.write_read_data(filename=filename,print_log=print_log,**model_info);
# In[10]:
#!cat Model.LAMMPS_read_data
# ### Perform the simulation
# In[11]:
# We can send collection of commands using the triple quote notation
s = """
# =========================================================================
# LAMMPS main parameter file and script
#
# Author: Paul J. Atzberger.
#
# Based on script generated by SELM Model Builder.
#
# =========================================================================
# == Setup variables for the script
variable dumpfreq equal 1
variable restart equal 0
variable neighborSkinDist equal 1.0 # distance for bins beyond force cut-off (1.0 = 1.0 Ang for units = real)
variable baseFilename universe Model
# == Setup the log file
#log ${baseFilename}.LAMMPS_logFile
#(New) setup the force term by adding a group of random atoms with specific force (Constant force for simple case)
#create_atoms 1 random 100 127569 box
#group obstacle type 1
#fix 4 force_term setforce 3.0 0.0 0.0
#(/New)
# == Setup style of the run
# type of units to use in the simulation (units used are in fact: amu, nm, ns, Kelvins)
units nano
# indicates possible types allowed for interactions between the atoms
atom_style angle
# indicates possible types allowed for bonds between the atoms
# bond_style hybrid harmonic
# indicates possible types allowed for bond angles between the atoms
angle_style none
# indicates type of boundary conditions in each direction (p = periodic)
boundary p p p
read_data ${baseFilename}.LAMMPS_read_data # file of atomic coordinates and topology
velocity all zero linear # initialize all atomic velocities initially to zero
"""
# feed commands to LAMMPs one line at a time
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[12]:
s = """
# == Interactions
pair_style none
atom_modify sort 1000 ${neighborSkinDist} # setup sort data explicitly since no interactions to set this data.
# == Setup neighbor list distance
comm_style tiled
comm_modify mode single cutoff 202.0 vel yes
neighbor ${neighborSkinDist} bin # first number gives a distance beyond the force cut-off ${neighborSkinDist}
neigh_modify every 1
atom_modify sort 0 ${neighborSkinDist} # setup sort data explicitly since no interactions to set this data.
# == Setup the SELM integrator
fix 1 all selm Main.SELM_params
# note langevin just computes forces, nve integrates the motions
#fix 1 all langevin 298.15 298.15 0.00001 48279
#fix 2 all nve
"""
# feed commands to LAMMPs one line at a time
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[13]:
#s="""
# 2 obstacles
#region void1 sphere 10 4 0 70
#delete_atoms region void1
#region void2 sphere 120 7 0 70
#delete_atoms region void2
#"""
#print_log("Sending commands to LAMMPs");
#for line in s.splitlines():
# print_log(line);
# L.command(line);
# In[14]:
s="""
# define groups
region 1 block INF INF INF -200 INF INF
group lower_y region 1
region 2 block INF -200 INF INF INF INF
group lower_x region 2
region 3 block INF INF INF INF INF -200
group lower_z region 3
region 4 block INF INF 200 INF INF INF
group upper_y region 4
region 5 block 200 INF INF INF INF INF
group upper_x region 5
region 6 block INF INF INF INF 200 INF
group upper_z region 6
"""
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[15]:
s="""
# define groups
group boundary union lower_y lower_x lower_z upper_y upper_x upper_z
group flow subtract all boundary
"""
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[ ]:
x=np.random.uniform(-160,160,10)
y=np.random.uniform(-160,160,10)
z=np.random.uniform(-160,160,10)
points=list(zip(x,y,z))
j=7
for i in points:
L.region(j,"sphere",i[0],i[1],i[2],40)
j=j+1
original="delete_atoms region "
for j in range(7,17):
line1=original+str(j)
line2="fix "+ str(j) +" flow indent "+str(50)+" sphere "+ str(points[j-7][0])+" "+str(points[j-7][1])+" "+str(points[j-7][2])+" "+str(41)
L.command(line1)
print_log(line1)
L.command(line2)
print_log(line2)
# In[16]:
#s="""
#fix 2 flow indent 100 sphere 10 4 0 4
#fix 3 flow indent 100 sphere 20 7 0 4
#"""
#print_log("Sending commands to LAMMPs");
#for line in s.splitlines():
# print_log(line);
# L.command(line);
# In[17]:
s="""
##(New) fix spring
fix 4 all spring tether 5.0 0.0 0.0 0.0 5.0
"""
#fix 5 flow spring tether 50.0 0.0 0.0 0.0 0.0
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[18]:
s="""
group forcing type 3
"""
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[19]:
s="""
fix 5 forcing setforce 20.0 0.0 0.0
"""
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[20]:
s="""
info all out
"""
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[21]:
s="""
# == Setup output data write to disk
dump dmp_vtk all vtk ${dumpfreq} ./vtk/Particles_*.vtp id type x y z vx vy vz fx fy fz
dump_modify dmp_vtk pad 8 # ensures filenames file_000000.data
dump out all yaml 100 dump.yaml id type x y z vx vy vz vx vy vz
# == simulation time-stepping
timestep 6
# == Run the simulation
run 100 upto
# == Write restart data
write_restart ${baseFilename}.LAMMPS_restart_data
"""
# feed commands to LAMMPs one line at a time
print_log("Sending commands to LAMMPs");
for line in s.splitlines():
print_log(line);
L.command(line);
# In[22]:
#!cat Model.SELM_Info
# In[23]:
print_log("Done");
# In[ ]: