-
Notifications
You must be signed in to change notification settings - Fork 0
/
ocv.py
70 lines (59 loc) · 2.55 KB
/
ocv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import cv2
import numpy as np
import time
#harry potter uses that cloak to become invisible
#color dectection technique and segmentation
#in greeen screening we remove background in this techniqu we remove the background
# alias python='/Library/Frameworks/Python.framework/Versions/3.6/bin/python3.6'
# replace the pixels corresponding with background pixels to generate the invisibilty feature
#Hue : This channel encodes color information. Hue can be thought of an angle where 0 degree corresponds to the red color,
# 120 degrees corresponds to the green color, and 240 degrees corresponds to the blue color.
#Saturation : This channel encodes the intensity/purity of color. For example, pink is less saturated than red.
#$Value : This channel encodes the brightness of color. Shading and gloss components of an image appear in this channel
#reading the videocapture video
print(cv2.__version__)
capture_video = cv2.VideoCapture("video1.mp4") #Use this statement for show the attached video view....
#cap = cv2.VideoCapture(0) #Use this statement for show the real time view....
#give the camera to warm up
time.sleep(1)
count = 0
background = 0
#capturing the background in range of 60
for i in range(60):
return_val , background = capture_video.read()
if return_val == False :
continue
background = np.flip(background, axis=1)
# we are reading from video
while (capture_video.isOpened()):
return_val, img = capture_video.read()
if not return_val :
break
count = count + 1
img = np.flip(img , axis=1)
# convert the image - BGR to HSV
# as we focused on detection of red color
hsv = cv2.cvtColor(img , cv2.COLOR_BGR2HSV)
# generating mask to detect red color
# HSV
# it should be mono-color cloth
# lower range
lower_red = np.array([100, 40, 40])
upper_red = np.array([100, 255, 255])
mask1 = cv2.inRange(hsv,lower_red,upper_red)
lower_red = np.array([155, 40, 40])
upper_red = np.array([180, 255, 255])
mask2 = cv2.inRange(hsv,lower_red,upper_red)
mask1 = mask1+mask2
# Refining the mask corresponding to the detected red color
mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3,3),np.uint8),iterations=2)
mask1 = cv2.dilate(mask1,np.ones((3,3),np.uint8),iterations = 1)
mask2 = cv2.bitwise_not(mask1)
# Generating the final output
res1 = cv2.bitwise_and(background,background,mask=mask1)
res2 = cv2.bitwise_and(img,img,mask=mask2)
final_output = cv2.addWeighted(res1,1,res2,1,0)
cv2.imshow("INVISIBLE MAN",final_output)
k = cv2.waitKey(10)
if k == 27:
break