-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathearthquake.py
110 lines (85 loc) · 3.76 KB
/
earthquake.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#This will have all the necessary functions that are needed to used inside the pbs scripts written in dragon_breath... ::~)
import logging
import numpy as np
def determine_cutoff(antenna_means, method='median', factor=1.5):
"""
Determine a suitable cutoff value based on the mean amplitudes of antennas.
Parameters:
- antenna_means: List of tuples where each tuple contains (antenna_id, mean_amplitude).
- method: Method to calculate cutoff. Options are 'median' or 'stddev'.
- factor: Multiplier for the standard deviation method.
Returns:
- meancutoff: Calculated cutoff value.
"""
# Extract mean amplitudes from the list of tuples
amplitudes = [mean for _, mean in antenna_means]
if method == 'median':
# Use the median of mean amplitudes as the cutoff value
meancutoff = np.median(amplitudes)
elif method == 'stddev':
# Use mean and standard deviation to set the cutoff value
mean = np.mean(amplitudes)
stddev = np.std(amplitudes)
meancutoff = mean - factor * stddev
else:
raise ValueError("Unsupported method: {}".format(method))
return meancutoff
def get_antenna_means(msfilename, scan_number, poldata, mygoodchans, meancutoff):
"""
Get the mean amplitude values for each antenna in a single scan
and identify antennas that are outliers based on the cutoff value.
"""
# Open MS and initialize the MSMetaData tool
msmd.open(msfilename)
msmd.select({'scan': scan_number})
# Get antenna list
antennas = msmd.antennaids()
# Initialize lists to store mean values and bad antennas
antenna_means = []
bad_antennas = []
for ant in antennas:
# Retrieve amplitude data for the specified polarization
if poldata == 'RR':
data = msmd.getdata(['DATA'], antenna=ant, scan=scan_number, pol='RR')
elif poldata == 'LL':
data = msmd.getdata(['DATA'], antenna=ant, scan=scan_number, pol='LL')
else:
raise ValueError("Unsupported polarization: {}".format(poldata))
# Calculate the mean amplitude for the given channels
amplitudes = data['data'][0, 0, mygoodchans] # Select the channels
mean_amplitude = np.mean(np.abs(amplitudes))
antenna_means.append((ant, mean_amplitude))
# Identify outliers based on the mean cutoff
if mean_amplitude < meancutoff:
bad_antennas.append(ant)
msmd.close()
return antenna_means, bad_antennas
def flag_bad_antennas(msfilename, scan_number, bad_antennas, flagbadants=True):
"""
Flag bad antennas in the MS file for a given scan number.
"""
if not bad_antennas:
logging.info("No bad antennas found for scan {}".format(scan_number))
return
logging.info("Bad antennas for scan {}: {}".format(scan_number, bad_antennas))
flag_commands = []
for ant in bad_antennas:
flag_command = "mode='manual' antenna='{}' scan='{}'".format(ant, scan_number)
flag_commands.append(flag_command)
# Execute the flagging commands
logging.info("Flagging commands:")
for cmd in flag_commands:
logging.info(cmd)
if flagbadants:
logging.info("Now flagging the bad antennas.")
default(flagdata)
flagdata(vis=msfilename, mode='list', inpfile=flag_commands)
# Example usage
msfilename = 'your_measurement_set.ms'
scan_number = 1
poldata = 'RR' # or 'LL'
mygoodchans = range(0, 100) # Example channel range
# Get the mean amplitudes and determine the cutoff value
antenna_means, bad_antennas = get_antenna_means(msfilename, scan_number, poldata, mygoodchans, meancutoff=0.5)
# Flag bad antennas
flag_bad_antennas(msfilename, scan_number, bad_antennas)