-
Notifications
You must be signed in to change notification settings - Fork 1
/
Transformer.py
746 lines (592 loc) · 27.4 KB
/
Transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import math, copy, time
import pandas as pd
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchtext import data, datasets
from torch.utils.data import TensorDataset, DataLoader
from torch.autograd import Variable
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = torch.device("cpu")
WINDOW_SIZE = 10
VOCAB_SIZE = 29
class EncoderDecoder(nn.Module):
# A standard Encoder-Decoder architecture. Base for this and many other models.
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super(EncoderDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def forward(self, src, tgt, src_mask, tgt_mask):
#Take in and process masked src and target sequences.
return self.decode(self.encode(src, src_mask), src_mask, tgt, tgt_mask)
def encode(self, src, src_mask):
return self.encoder(self.src_embed(src), src_mask)
def decode(self, memory, src_mask, tgt, tgt_mask):
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
class Generator(nn.Module):
#Define standard linear + softmax generation step.
def __init__(self, d_model, vocab):
super(Generator, self).__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
return F.log_softmax(self.proj(x), dim=-1)
def clones(module, N):
#Produce N identical layers.
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
#Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
#Pass the input (and mask) through each layer in turn.
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class LayerNorm(nn.Module):
#Construct a layernorm module (See citation for details).
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class SublayerConnection(nn.Module):
#A residual connection followed by a layer norm.
def __init__(self, size, dropout):
super(SublayerConnection, self).__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
#Apply residual connection to any sublayer with the same size.
return x + self.dropout(sublayer(self.norm(x)))
class EncoderLayer(nn.Module):
#Encoder is made up of self-attn and feed forward (defined below)
def __init__(self, size, self_attn, feed_forward, dropout):
super(EncoderLayer, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 2)
self.size = size
def forward(self, x, mask):
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
class Decoder(nn.Module):
#Generic N layer decoder with masking.
def __init__(self, layer, N):
super(Decoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super(DecoderLayer, self).__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = clones(SublayerConnection(size, dropout), 3)
def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."
m = memory
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, m, m, src_mask))
return self.sublayer[2](x, self.feed_forward)
def subsequent_mask(size):
"Mask out subsequent positions."
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super(MultiHeadedAttention, self).__init__()
assert d_model % h == 0
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.linears = clones(nn.Linear(d_model, d_model), 4)
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(query, key, value, mask=mask,
dropout=self.dropout)
# 3) "Concat" using a view and apply a final linear.
x = x.transpose(1, 2).contiguous() .view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
class PositionwiseFeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(F.relu(self.w_1(x))))
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super(Embeddings, self).__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
emb = self.lut(x) * math.sqrt(self.d_model)
return emb
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + Variable(self.pe[:, :x.size(1)],
requires_grad=False)
return self.dropout(x)
def make_model(src_vocab, tgt_vocab, N=6, d_model=512, d_ff=2048, h=8, dropout=0.1):
"Helper: Construct a model from hyperparameters."
c = copy.deepcopy
attn = MultiHeadedAttention(h, d_model)
ff = PositionwiseFeedForward(d_model, d_ff, dropout)
position = PositionalEncoding(d_model, dropout)
model = EncoderDecoder(
Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N),
nn.Sequential(Embeddings(d_model, src_vocab), c(position)),
nn.Sequential(Embeddings(d_model, tgt_vocab), c(position)),
Generator(d_model, tgt_vocab))
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
class Batch:
"Object for holding a batch of data with mask during training."
def __init__(self, src, trg=None, pad=0):
self.src = src
self.src_mask = (src != pad).unsqueeze(-2)
if trg is not None:
self.trg = trg[:, :-1]
self.trg_y = trg[:, 1:]
self.trg_mask = self.make_std_mask(self.trg, pad)
self.ntokens = (self.trg_y != pad).data.sum()
@staticmethod
def make_std_mask(tgt, pad):
"Create a mask to hide padding and future words."
tgt_mask = (tgt != pad).unsqueeze(-2)
tgt_mask = tgt_mask & Variable(
subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
return tgt_mask
global max_src_in_batch, max_tgt_in_batch
def batch_size_fn(new, count, sofar):
"Keep augmenting batch and calculate total number of tokens + padding."
global max_src_in_batch, max_tgt_in_batch
if count == 1:
max_src_in_batch = 0
max_tgt_in_batch = 0
max_src_in_batch = max(max_src_in_batch, len(new.src))
max_tgt_in_batch = max(max_tgt_in_batch, len(new.trg) + 2)
src_elements = count * max_src_in_batch
tgt_elements = count * max_tgt_in_batch
return max(src_elements, tgt_elements)
class NoamOpt:
"Optim wrapper that implements rate."
def __init__(self, model_size, factor, warmup, optimizer):
self.optimizer = optimizer
self._step = 0
self.warmup = warmup
self.factor = factor
self.model_size = model_size
self._rate = 0
def step(self):
"Update parameters and rate"
self._step += 1
rate = self.rate()
for p in self.optimizer.param_groups:
p['lr'] = rate
self._rate = rate
self.optimizer.step()
def rate(self, step = None):
"Implement `lrate` above"
if step is None:
step = self._step
return self.factor * (self.model_size ** (-0.5) *
min(step ** (-0.5), step * self.warmup ** (-1.5)))
def get_std_opt(model):
return NoamOpt(model.src_embed[0].d_model, 2, 4000,
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
class LabelSmoothing(nn.Module):
"Implement label smoothing."
def __init__(self, size, padding_idx, smoothing=0.0):
super(LabelSmoothing, self).__init__()
self.criterion = nn.KLDivLoss(size_average=False)
self.padding_idx = padding_idx
self.confidence = 1.0 - smoothing
self.smoothing = smoothing
self.size = size
self.true_dist = None
def forward(self, x, target):
assert x.size(1) == self.size
true_dist = x.data.clone()
true_dist.fill_(self.smoothing / (self.size - 2))
true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
true_dist[:, self.padding_idx] = 0
mask = torch.nonzero(target.data == self.padding_idx)
if mask.dim() > 0:
true_dist.index_fill_(0, mask.squeeze(), 0.0)
self.true_dist = true_dist
return self.criterion(x, Variable(true_dist, requires_grad=False))
class SimpleLossCompute:
"A simple loss compute and train function."
def __init__(self, generator, criterion, opt=None):
self.generator = generator
self.criterion = criterion
self.opt = opt
def __call__(self, x, y, norm):
x = self.generator(x)
loss = self.criterion(x.contiguous().view(-1, x.size(-1)), y.contiguous().view(-1)) / norm
loss.backward()
if self.opt is not None:
self.opt.step()
self.opt.optimizer.zero_grad()
return loss.item() * norm
class MyIterator(data.Iterator):
def create_batches(self):
if self.train:
def pool(d, random_shuffler):
for p in data.batch(d, self.batch_size * 100):
p_batch = data.batch(
sorted(p, key=self.sort_key),
self.batch_size, self.batch_size_fn)
for b in random_shuffler(list(p_batch)):
yield b
self.batches = pool(self.data(), self.random_shuffler)
else:
self.batches = []
for b in data.batch(self.data(), self.batch_size,
self.batch_size_fn):
self.batches.append(sorted(b, key=self.sort_key))
def rebatch(pad_idx, batch):
"Fix order in torchtext to match ours"
src, trg = batch.src.transpose(0, 1), batch.trg.transpose(0, 1)
return Batch(src, trg, pad_idx)
class MultiGPULossCompute:
"A multi-gpu loss compute and train function."
def __init__(self, generator, criterion, devices, opt=None, chunk_size=5):
# Send out to different gpus.
self.generator = generator
self.criterion = nn.parallel.replicate(criterion,
devices=devices)
self.opt = opt
self.devices = devices
self.chunk_size = chunk_size
def __call__(self, out, targets, normalize):
total = 0.0
generator = nn.parallel.replicate(self.generator,
devices=self.devices)
out_scatter = nn.parallel.scatter(out,
target_gpus=self.devices)
out_grad = [[] for _ in out_scatter]
targets = nn.parallel.scatter(targets,
target_gpus=self.devices)
# Divide generating into chunks.
chunk_size = self.chunk_size
for i in range(0, out_scatter[0].size(1), chunk_size):
# Predict distributions
out_column = [[Variable(o[:, i:i+chunk_size].data,
requires_grad=self.opt is not None)]
for o in out_scatter]
gen = nn.parallel.parallel_apply(generator, out_column)
# Compute loss.
y = [(g.contiguous().view(-1, g.size(-1)),
t[:, i:i+chunk_size].contiguous().view(-1))
for g, t in zip(gen, targets)]
loss = nn.parallel.parallel_apply(self.criterion, y)
# Sum and normalize loss
l = nn.parallel.gather(loss, target_device=self.devices[0])
# l = l.sum()[0] / normalize
l = l.sum() / normalize
total += l.data
# total += l.data
# Backprop loss to output of transformer
if self.opt is not None:
l.backward()
for j, l in enumerate(loss):
out_grad[j].append(out_column[j][0].grad.data.clone())
# Backprop all loss through transformer.
if self.opt is not None:
out_grad = [Variable(torch.cat(og, dim=1)) for og in out_grad]
o1 = out
o2 = nn.parallel.gather(out_grad,
target_device=self.devices[0])
o1.backward(gradient=o2)
self.opt.step()
self.opt.optimizer.zero_grad()
return total * normalize
def run_epoch(data_iter, model, loss_compute):
"Standard Training and Logging Function"
start = time.time()
total_tokens = 0
total_loss = 0
tokens = 0
for i, batch in enumerate(data_iter):
out = model.forward(batch.src, batch.trg, batch.src_mask, batch.trg_mask)
loss = loss_compute(out, batch.trg_y, batch.ntokens)
total_loss += loss
total_tokens += batch.ntokens
tokens += batch.ntokens
x = out
if i % 50 == 1:
elapsed = time.time() - start
print("Epoch Step: %d Loss: %f Tokens per Sec: %f" % (i, loss / batch.ntokens, tokens / elapsed))
start = time.time()
tokens = 0
return total_loss / total_tokens
def greedy_decode(model, src, src_mask, tgt, max_len, start_symbol, pred, g):
memory = model.encode(src, src_mask)
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
torch.set_printoptions(precision=2)
for i in range(max_len-1):
out = model.decode(memory, src_mask, Variable(ys), Variable(subsequent_mask(ys.size(1)).type_as(src.data)))
prob = model.generator(out[:, -1])
predicted = torch.argsort(prob, 1)[0][-g:]
label = tgt[0][i]
if label == 0:
return ys
_, next_key = torch.max(prob, dim = 1)
next_key = next_key.data[0]
if pred:
print("Incoming log:", label)
print("Candidate logs:", predicted, "\n")
# print("Probabilities: ", torch.sort(prob,1)[0][0][-g:])
if label not in predicted:
abn = torch.tensor([-1])
abn = abn.data[0]
ys = torch.cat([ys,torch.ones(1, 1).type_as(src.data).fill_(label)], dim=1)
ys = torch.cat([ys,torch.ones(1, 1).type_as(src.data).fill_(abn)], dim=1)
# print(ys[:,1:])
return ys[:,1:]
else:
ys = torch.cat([ys,torch.ones(1, 1).type_as(src.data).fill_(label)], dim=1)
# _, next_key = torch.max(prob, dim = 1)
# next_key = next_key.data[0]
# ys = torch.cat([ys,torch.ones(1, 1).type_as(src.data).fill_(next_key)], dim=1)
return ys[:,1:]
def data_gen(filename, V, WINDOW_SIZE, batch, nbatches):
num_sessions = 0
inputs = []
outputs = []
t1 = torch.from_numpy(np.zeros((batch, WINDOW_SIZE+1),dtype=int))
t2 = torch.from_numpy(np.zeros((batch, WINDOW_SIZE+1),dtype=int))
with open('Dataset/' + filename, 'r') as f:
for line in f.readlines():
num_sessions += 1
line = tuple(map(lambda n: n, map(int, line.strip().split())))
inputs.append(line[0: WINDOW_SIZE])
outputs.append(line[WINDOW_SIZE:WINDOW_SIZE*2])
if len(outputs[-1]) != WINDOW_SIZE:
for _ in range(WINDOW_SIZE - len(outputs[-1])):
outputs[-1] = outputs[-1] + (0,)
if len(inputs[-1]) != WINDOW_SIZE:
for _ in range(WINDOW_SIZE - len(inputs[-1])):
inputs[-1] = inputs[-1] + (0,)
for j in range(nbatches):
for i in range(batch):
x = inputs[i]
y = outputs[i]
t1[i][1:] = torch.tensor(x, dtype=torch.float).to(device)
t2[i][1:] = torch.tensor(y, dtype=torch.float).to(device)
t1[:,0] = 1
t2[:,0] = 1
src = Variable(t1, requires_grad=False)
tgt = Variable(t2, requires_grad=False)
yield Batch(src, tgt, 0)
def train(N=2, d_model=512, d_ff=2048, h=4, dropout=0.1):
log_keys = "HDFS/hdfs_train"
devices = [0, 1]
frac = 1
print(N, d_model, d_ff, h, dropout)
# data_train = generate('hdfs_train')
# BOS_WORD = '<s>'
# EOS_WORD = '</s>'
# BLANK_WORD = "<blank>"
# SRC = data.Field(pad_token=BLANK_WORD)
# TGT = data.Field(init_token = BOS_WORD, eos_token = EOS_WORD, pad_token=BLANK_WORD)
# MAX_LEN = 10
# MIN_FREQ = 2
# SRC.build_vocab(source, min_freq=MIN_FREQ)
# TGT.build_vocab(target, min_freq=MIN_FREQ)
# model = make_model(len(SRC.vocab), len(TGT.vocab), N=N)
# criterion = LabelSmoothing(size=len(TGT.vocab), padding_idx=0, smoothing=0.1)
# BATCH_SIZE = 12000
# train_iter = MyIterator(train, batch_size=BATCH_SIZE, device=0,
# repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
# batch_size_fn=batch_size_fn, train=True)
# valid_iter = MyIterator(val, batch_size=BATCH_SIZE, device=0,
# repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)),
# batch_size_fn=batch_size_fn, train=False)
#Build model
model = make_model(VOCAB_SIZE, VOCAB_SIZE, N=N, d_model=d_model, d_ff=d_ff, h=h, dropout=dropout)
criterion = LabelSmoothing(size = VOCAB_SIZE, padding_idx=0, smoothing=0.0)
# global_model.cuda()
# criterion.cuda()
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
model_par = nn.DataParallel(model, device_ids=devices)
for epoch in range(10):
model.train()
run_epoch(data_gen(log_keys, VOCAB_SIZE, WINDOW_SIZE, 10, 30), model, SimpleLossCompute(model.generator, criterion, model_opt))
# print(run_epoch(data_gen(log_keys, VOCAB_SIZE, WINDOW_SIZE, 10, 30), model_par, MultiGPULossCompute(global_model.generator, criterion, devices=devices, opt=model_opt)))
model.eval()
print(run_epoch(data_gen(log_keys, VOCAB_SIZE, WINDOW_SIZE, 10, 5), model, SimpleLossCompute(model.generator, criterion, None)))
# print(run_epoch(data_gen(log_keys, VOCAB_SIZE, WINDOW_SIZE, 10, 5), model_par, MultiGPULossCompute(global_model.generator, criterion, devices=devices, opt=None)))
torch.save(model.state_dict(), "Model/centralized_model.pt")
torch.save(model, "Model/centralized_models.pt")
return model
def federated_training(rounds = 1, clients = 0, N=2, d_model=512, d_ff=2048, h=4, dropout=0.1):
log_keys = "HDFS_1/hdfs_train"
devices = [0, 1]
frac = 1
global_model = make_model(VOCAB_SIZE, VOCAB_SIZE, N=N, d_model=d_model, d_ff=d_ff, h=h, dropout=dropout)
criterion = LabelSmoothing(size = VOCAB_SIZE, padding_idx=0, smoothing=0.0)
print(N, d_model, d_ff, h, dropout)
# Set the model to train and send it to device.
# global_model.to(device)
# global_model.train()
# copy weights
# global_weights = global_model.state_dict()
global_weights = []
# Training
train_loss, train_accuracy = [], []
val_acc_list, net_list = [], []
cv_loss, cv_acc = [], []
print_every = 2
val_loss_pre, counter = 0, 0
for epoch in tqdm(range(rounds)):
local_weights, local_losses = [], []
print(f'\n | Global Training Round : {epoch+1} |\n')
m = max(int(frac * clients), 1)
idxs_users = np.random.choice(range(clients), m, replace=False)
for i in idxs_users:
print("Client:", i)
log_keys = "hdfs_train" + str(i)
model = make_model(VOCAB_SIZE, VOCAB_SIZE, N=N, d_model=d_model, d_ff=d_ff, h=h, dropout=dropout)
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
for epoch in range(10):
model.train()
run_epoch(data_gen(log_keys, VOCAB_SIZE, WINDOW_SIZE, 10, 30), model, SimpleLossCompute(model.generator, criterion, model_opt))
# print(run_epoch(data_gen(log_keys, VOCAB_SIZE, WINDOW_SIZE, 10, 30), model_par, MultiGPULossCompute(global_model.generator, criterion, devices=devices, opt=model_opt)))
model.eval()
print(run_epoch(data_gen(log_keys, VOCAB_SIZE, WINDOW_SIZE, 10, 5), model, SimpleLossCompute(model.generator, criterion, None)))
# print(run_epoch(data_gen(log_keys, VOCAB_SIZE, WINDOW_SIZE, 10, 5), model_par, MultiGPULossCompute(global_model.generator, criterion, devices=devices, opt=None)))
local_weights.append(copy.deepcopy(model.state_dict()))
torch.save(model.state_dict(), "Model/model" + str(i) + ".pt")
global_weights = average_weights(local_weights)
global_model.load_state_dict(global_weights)
torch.save(global_model, "Model/global_models.pt")
return global_model
def test(model):
FP = 0
TP = 0
TN = 0
FN = 0
model.eval()
num = 5000
input_n, output_n = generate("HDFS/hdfs_test_normal")
input_a, output_a = generate("HDFS/hdfs_test_abnormal")
src_mask = Variable(torch.ones(1, 1, WINDOW_SIZE + 1) )
t1 = torch.from_numpy(np.zeros((1, WINDOW_SIZE + 1),dtype=int))
t2 = torch.from_numpy(np.zeros((1, WINDOW_SIZE),dtype=int))
start_time = time.time()
for i in range(num):
t1[0][1:WINDOW_SIZE+1] = torch.tensor(input_n[i], dtype=torch.float).to(device)
t2[0][0:WINDOW_SIZE+1] = torch.tensor(output_n[i], dtype=torch.float).to(device)
t1[0][0]=1
src = Variable(t1, requires_grad=False)
tgt = Variable(t2, requires_grad=False)
pred = greedy_decode(model, src, src_mask, tgt, max_len=WINDOW_SIZE+1, start_symbol=1, pred=False, g=9)
if -1 in pred: FP = FP + 1
else: TN = TN + 1
if (i%1000) == 0: print(i)
t1 = torch.from_numpy(np.zeros((1, WINDOW_SIZE + 1),dtype=int))
t2 = torch.from_numpy(np.zeros((1, WINDOW_SIZE + 1),dtype=int))
for i in range(num):
t1[0][1:len(input_a[i])+1] = torch.tensor(input_a[i], dtype=torch.float).to(device)
t2[0][1:WINDOW_SIZE+1] = torch.tensor(output_a[i], dtype=torch.float).to(device)
t1[0][0]=1
t2[0][0]=1
src = Variable(t1, requires_grad=False)
tgt = Variable(t2, requires_grad=False)
pred = greedy_decode(model, src, src_mask, tgt, max_len=WINDOW_SIZE+1, start_symbol=1, pred=False, g=9)
if -1 in pred: TP = TP + 1
else: FN = FN + 1
if (i%1000) == 0: print(i)
A = 100 * (TP + TN)/(TP + TN + FP + FN)
P = 100 * TP / (TP + FP)
R = 100 * TP / (TP + FN)
F1 = 2 * P * R / (P + R)
print('True positive (TP): {}, \ntrue negative (TN): {}, \nfalse positive (FP): {}, \nfalse negative (FN): {}, \nAccuracy: {:.3f}%, \nPrecision: {:.3f}%, \nRecall: {:.3f}%, \nF1-measure: {:.3f}%'.format(TP, TN, FP, FN, A, P, R, F1))
elapsed_time = time.time() - start_time
print('elapsed_time: {:.3f}s'.format(elapsed_time))
return
def average_weights(w):
w_avg = copy.deepcopy(w[0])
for key in w_avg.keys():
for i in range(1, len(w)):
w_avg[key] += w[i][key]
w_avg[key] = torch.div(w_avg[key], len(w))
return w_avg
def generate(name):
hdfs = set()
inputs = []
outputs = []
num_sessions = 0
# hdfs = []
with open('Dataset/' + name, 'r') as f:
for line in f.readlines():
num_sessions += 1
line = tuple(map(lambda n: n, map(int, line.strip().split())))
##for i in range(len(line) - WINDOW_SIZE):
inputs.append(line[0: WINDOW_SIZE])
outputs.append(line[WINDOW_SIZE:WINDOW_SIZE*2])
if len(outputs[-1]) != WINDOW_SIZE:
for _ in range(WINDOW_SIZE - len(outputs[-1])): outputs[-1] = outputs[-1] + (0,)
print(len(inputs))
print(len(outputs))
return inputs, outputs