-
Notifications
You must be signed in to change notification settings - Fork 0
/
TFIDF.java
163 lines (135 loc) · 6.14 KB
/
TFIDF.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
* Author: Arun K Thomas
* email : akunnump@uncc.edu
*
*/
import java.io.IOException;
import java.util.HashMap;
import java.util.regex.Pattern;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.log4j.Logger;
import org.apache.log4j.Priority;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.fs.ContentSummary;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
/*
* This program is used to find the TFIDF score for each unique word for each file.
* TF-IDF(t, d) = WF(t,d) * IDF(t)
*
*/
public class TFIDF extends Configured implements Tool {
static String delimiter="#####";
// static variable not working when I run in hdfs
//static long totalNumberOfDocs=0;
private static final Logger LOG = Logger .getLogger( TFIDF.class);
/*
* I am creating a temp folder in output directory to store the TermFrequency job result. This will be the input for Mapper in the TFIDF job.
* First I am executing TermFrequency map Reducer and once it is completed I am running the TFIDF Map Reducer by passing the ouput from TermFrequecny map reducer.
*
* Input for TermFrequency MapReduce is Input files location and Temp folder location in output directory
* Input for TFIDF MapReduce is input file location, output file location of TermFrequency MapReduce and output directory.
* Output of TFIDF MapReduce will be stored in tfidf folder of output directory.
*/
public static void main( String[] args) throws Exception {
String inputFileDir= args[0];
String outputDirForTF=args[1]+"/temp";
String[] inputForTFargs= {inputFileDir,outputDirForTF};
int tfres= ToolRunner.run(new TermFrequency(), inputForTFargs);
String[] inputForTFIDFargs = {args[0],args[1]+"/tfidf",outputDirForTF};
if(tfres ==0)
{
int tfidfres = ToolRunner .run( new TFIDF(), inputForTFIDFargs);
System .exit(tfidfres);
}
System .exit(tfres);
}
/*
* Job is configured here based on the input and output files, Mapper and Reducer class
* I am calcuatling the total number of files in the hdfs input file directiry and storing it as a parameter in Configuration. This is used from the Reducer.
*
*/
public int run( String[] args) throws Exception {
//3 arguments passed
// first argument the locations where all files reside, second one output directory, third is the location of output of TermFrequency program.
FileSystem fs = FileSystem.get(getConf());
Path pt = new Path(args[0]);
ContentSummary cs = fs.getContentSummary(pt);
long fileCount = cs.getFileCount();
Configuration config= new Configuration();
config.set("totalnumberofdocs", fileCount+"");
Job job = Job .getInstance(config, " tfidf ");
job.setJarByClass( this .getClass());
//static variable not working when I ran in hdfs
// totalNumberOfDocs=fileCount;
// FileInputFormat.addInputPaths(job, args[0]);
FileInputFormat.addInputPaths(job, args[2]);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass( Map .class);
job.setReducerClass( Reduce .class);
job.setOutputKeyClass( Text .class);
job.setOutputValueClass( Text .class);
return job.waitForCompletion( true) ? 0 : 1;
}
/*
* Map will read the output from TermFrequency MapReducer and for each word as key it produce the filename=tfscore as value.
*/
public static class Map extends Mapper<LongWritable , Text , Text , Text > {
private final static IntWritable one = new IntWritable( 1);
private Text word = new Text();
private static final Pattern WORD_BOUNDARY = Pattern .compile("\\s*\\b\\s*");
public void map( LongWritable offset, Text lineText, Context context)
throws IOException, InterruptedException {
String line = lineText.toString();
String[] keyValues=line.split(TFIDF.delimiter);
String key=keyValues[0];
String[] fileNameTF=keyValues[1].split("\t");
String fileName= fileNameTF[0];
String tfScore=fileNameTF[1];
String result=fileName+"="+tfScore;
context.write(new Text(key), new Text(result));
}
}
/*Reduce will calculate the tfidf score of each word for each file. totat number of files is read from the configutation and it is used for calculating the idf score.
*
*
*/
public static class Reduce extends Reducer<Text , Text , Text , DoubleWritable > {
@Override
public void reduce( Text word, Iterable<Text > tfscores, Context context)
throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
String totalNumberOfDocsString = conf.get("totalnumberofdocs");
int totalNumberOfDocs= Integer.parseInt(totalNumberOfDocsString);
int fileCount=0;
HashMap<String,Double> map= new HashMap<String,Double>();
for ( Text tfscore : tfscores) {
String[] filetfscore= tfscore.toString().split("=");
String fileName=filetfscore[0];
String score=filetfscore[1];
String key=word.toString()+TFIDF.delimiter+fileName;
map.put(key, Double.parseDouble(score));
fileCount++;
}
//calculating the idf
double idfScore= Math.log10(1+ (totalNumberOfDocs/fileCount));
for(String key:map.keySet())
{
double tfidfScore= map.get(key)*idfScore;
context.write(new Text(key), new DoubleWritable(tfidfScore));
}
}
}
}