-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EMT-expanding.html
428 lines (344 loc) · 25.9 KB
/
EMT-expanding.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta content="width=device-width, initial-scale=1.0" name="viewport">
<title>Magnetogenesis</title>
<meta content="" name="description">
<meta content="" name="keywords">
<!-- Favicons -->
<link href="assets/img/Favicon-1.png" rel="icon">
<link href="assets/img/Favicon-1.png" rel="apple-touch-icon">
<!-- Google Fonts -->
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,300i,400,400i,600,600i,700,700i|Raleway:300,300i,400,400i,500,500i,600,600i,700,700i" rel="stylesheet">
<!-- Vendor CSS Files -->
<link href="assets/vendor/aos/aos.css" rel="stylesheet">
<link href="assets/vendor/bootstrap/css/bootstrap.min.css" rel="stylesheet">
<link href="assets/vendor/bootstrap-icons/bootstrap-icons.css" rel="stylesheet">
<link href="assets/vendor/boxicons/css/boxicons.min.css" rel="stylesheet">
<link href="assets/vendor/glightbox/css/glightbox.min.css" rel="stylesheet">
<link href="assets/vendor/swiper/swiper-bundle.min.css" rel="stylesheet">
<!-- Creating a python code section-->
<link rel="stylesheet" href="assets/css/prism.css">
<script src="assets/js/prism.js"></script>
<!-- Template Main CSS File -->
<link href="assets/css/style.css" rel="stylesheet">
<!-- To set the icon, visit https://fontawesome.com/account-->
<script src="https://kit.fontawesome.com/5d25c1efd3.js" crossorigin="anonymous"></script>
<!-- end of icon-->
<script type="text/javascript" async
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-MML-AM_CHTML">
</script>
<!-- =======================================================
* Template Name: iPortfolio
* Updated: Sep 18 2023 with Bootstrap v5.3.2
* Template URL: https://bootstrapmade.com/iportfolio-bootstrap-portfolio-websites-template/
* Author: BootstrapMade.com
* License: https://bootstrapmade.com/license/
======================================================== -->
</head>
<body>
<!-- ======= Mobile nav toggle button ======= -->
<i class="bi bi-list mobile-nav-toggle d-xl-none"></i>
<!-- ======= Header ======= -->
<header id="header">
<div class="d-flex flex-column">
<div class="profile">
<img src="assets/img/myphoto.jpeg" alt="" class="img-fluid rounded-circle">
<h1 class="text-light"><a href="index.html">Arun</a></h1>
<div class="social-links mt-3 text-center">
<a href="https://www.linkedin.com/in/arunp77/" target="_blank" class="linkedin"><i class="bx bxl-linkedin"></i></a>
<a href="https://github.com/arunp77" target="_blank" class="github"><i class="bx bxl-github"></i></a>
<a href="https://twitter.com/arunp77_" target="_blank" class="twitter"><i class="bx bxl-twitter"></i></a>
<a href="https://www.instagram.com/arunp77/" target="_blank" class="instagram"><i class="bx bxl-instagram"></i></a>
<a href="https://arunp77.medium.com/" target="_blank" class="medium"><i class="bx bxl-medium"></i></a>
</div>
</div>
<nav id="navbar" class="nav-menu navbar">
<ul>
<li><a href="index.html#hero" class="nav-link scrollto active"><i class="bx bx-home"></i> <span>Home</span></a></li>
<li><a href="index.html#about" class="nav-link scrollto"><i class="bx bx-user"></i> <span>About</span></a></li>
<li><a href="index.html#resume" class="nav-link scrollto"><i class="bx bx-file-blank"></i> <span>Resume</span></a></li>
<li><a href="index.html#portfolio" class="nav-link scrollto"><i class="bx bx-book-content"></i> <span>Portfolio</span></a></li>
<li><a href="index.html#skills-and-tools" class="nav-link scrollto"><i class="bx bx-wrench"></i> <span>Skills and Tools</span></a></li>
<li><a href="index.html#language" class="nav-link scrollto"><i class="bi bi-menu-up"></i> <span>Languages</span></a></li>
<li><a href="index.html#awards" class="nav-link scrollto"><i class="bi bi-award-fill"></i> <span>Awards</span></a></li>
<li><a href="index.html#professionalcourses" class="nav-link scrollto"><i class="bx bx-book-alt"></i> <span>Professional Certification</span></a></li>
<li><a href="index.html#publications" class="nav-link scrollto"><i class="bx bx-news"></i> <span>Publications</span></a></li>
<li><a href="index.html#extra-curricular" class="nav-link scrollto"><i class="bx bx-rocket"></i> <span>Extra-Curricular Activities</span></a></li>
<!-- <li><a href="#contact" class="nav-link scrollto"><i class="bx bx-envelope"></i> <span>Contact</span></a></li> -->
</ul>
</nav><!-- .nav-menu -->
</div>
</header><!-- End Header -->
<main id="main">
<!-- ======= Breadcrumbs ======= -->
<section id="breadcrumbs" class="breadcrumbs">
<div class="container">
<div class="d-flex justify-content-between align-items-center">
<h2>Research</h2>
<ol>
<li><a href="portfolio-details-2.html" class="clickable-box">Content section</a></li>
<li><a href="index.html#portfolio" class="clickable-box">Portfolio section</a></li>
</ol>
</div>
</div>
</section><!-- End Breadcrumbs -->
<!------ right dropdown menu ------->
<div class="right-side-list">
<div class="dropdown">
<button class="dropbtn"><strong>Shortcuts:</strong></button>
<div class="dropdown-content">
<ul>
<li><a href="cloud-compute.html"><i class="fas fa-cloud"></i> Cloud</a></li>
<li><a href="AWS-GCP.html"><i class="fas fa-cloud"></i> AWS-GCP</a></li>
<li><a href="amazon-s3.html"><i class="fas fa-cloud"></i> AWS S3</a></li>
<li><a href="ec2-confi.html"><i class="fas fa-server"></i> EC2</a></li>
<li><a href="Docker-Container.html"><i class="fab fa-docker" style="color: rgb(29, 27, 27);"></i> Docker</a></li>
<li><a href="Jupyter-nifi.html"><i class="fab fa-python" style="color: rgb(34, 32, 32);"></i> Jupyter-nifi</a></li>
<li><a href="snowflake-task-stream.html"><i class="fas fa-snowflake"></i> Snowflake</a></li>
<li><a href="data-model.html"><i class="fas fa-database"></i> Data modeling</a></li>
<li><a href="sql-basics.html"><i class="fas fa-table"></i> SQL</a></li>
<li><a href="sql-basic-details.html"><i class="fas fa-database"></i> SQL</a></li>
<li><a href="Bigquerry-sql.html"><i class="fas fa-database"></i> Bigquery</a></li>
<li><a href="scd.html"><i class="fas fa-archive"></i> SCD</a></li>
<li><a href="sql-project.html"><i class="fas fa-database"></i> SQL project</a></li>
<!-- Add more subsections as needed -->
</ul>
</div>
</div>
</div>
<!-- ======= Portfolio Details Section ======= -->
<section id="portfolio-details" class="portfolio-details">
<div class="container">
<hr>
<div class="row gy-4">
<h1>Maxwell's equations in expanding background</h1>
<div class="col-lg-8">
<div class="portfolio-details-slider swiper">
<div class="swiper-wrapper align-items-center">
<figure>
<img src="assets/img/Scietific/symmetry-14-01641-g001.png" alt="" style="max-width: 60%; max-height: auto;">
<figcaption style="text-align: center;"><a href="https://www.mdpi.com/2073-8994/14/8/1641" target="_blank">Lorentz Transformation in Maxwell Equations for Slowly Moving Media, Xin-Li Sheng, Yang Li, Shi and Qun Wang</a>.</figcaption>
</figure>
</div>
<div class="swiper-pagination"></div>
</div>
</div>
<div class="col-lg-4 grey-box">
<h3>Content</h3>
<ol>
<li><a href="#introduction">Introduction</a></li>
<li><a href="#flrw">Background: FLRW Metric</a></li>
<li><a href="#covarient">Covariant Form of Maxwell's Equations</a></li>
<li><a href="#emt-flrw">Electromagnetic Field Tensor in FLRW Metric</a></li>
<li><a href="#evolution">Evolution of Magnetic Fields</a></li>
<li><a href="#constarints">Magnetic Field Constraints</a></li>
<li><a href="#homo-maxwell">Homogeneous Maxwell Equations in an Expanding Universe</a></li>
<li><a href="#inhomo-maxwell">Inhomogeneous Maxwell Equations in an Expanding Universe</a></li>
<li><a href="#derivation">Derivation of Maxwell's equation in expanding background</a></li>
<li><a href="#reference">Reference</a></li>
</ol>
</div>
<hr>
</div>
<!---------sections start here ------------>
<section>
<h2 id="introduction">Introduction </h2>
Maxwell's equations are the foundation of classical electromagnetism, and in the context of an expanding universe, they must be modified to account for the effects of spacetime curvature described by general relativity. In this derivation, we will reframe Maxwell's equations in the context of an expanding universe, specifically using the metric of a <b>Friedmann-Lemaître-Robertson-Walker (FLRW)</b> spacetime, which describes a homogeneous and isotropic universe.
<h4 id="flrw">Background: FLRW Metric</h4>
In cosmology, the expanding universe is often described using the FLRW metric, which in spherical coordinates \((t, r, \theta, \phi)\) is written as:
\[
ds^2 = -c^2 dt^2 + a^2(t) \left( \frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2\theta \, d\phi^2 \right)
\]
Here:
<ul>
<li>\( t \) is cosmic time,</li>
<li>\( r, \theta, \phi \) are comoving spatial coordinates,</li>
<li>\( a(t) \) is the scale factor, which describes how distances between objects evolve over time,</li>
<li>\( k \) is the curvature parameter (\(k = 0\) for flat, \(k = +1\) for closed, \(k = -1\) for open universe).</li>
</ul>
In this metric, the scale factor \( a(t) \) encapsulates the expansion of the universe. The curvature \( k \) determines whether the universe is spatially flat, open, or closed.
<h4 id="covarient">Covariant Form of Maxwell's Equations</h4>
In curved spacetime, Maxwell's equations are written using tensor notation. The electromagnetic field is described by the <b>electromagnetic field strength tensor</b> \( F_{\mu\nu} \), which is related to the electric and magnetic fields. The covariant form of Maxwell's equations in curved spacetime is given as:
<ol>
<li><b>Homogeneous Maxwell Equations (from the Bianchi identities):</b>
\[
\nabla_\alpha F_{\beta\gamma} + \nabla_\beta F_{\gamma\alpha} + \nabla_\gamma F_{\alpha\beta} = 0
\]
</li>
<li><b>Inhomogeneous Maxwell Equations (from the coupling with sources):</b>
\[
\nabla_\nu F^{\mu\nu} = \mu_0 J^\mu
\]
where \( \nabla_\mu \) is the covariant derivative, \( J^\mu \) is the four-current density, and \( \mu_0 \) is the vacuum permeability.
</li>
</ol>
<h4 id="emt-flrw">Electromagnetic Field Tensor in FLRW Metric</h4>
The electromagnetic field tensor \( F_{\mu\nu} \) is related to the electric and magnetic fields \( \mathbf{E} \) and \( \mathbf{B} \) in the following way:
\[
F_{\mu\nu} = \begin{pmatrix}
0 & E_x & E_y & E_z \\
-E_x & 0 & B_z & -B_y \\
-E_y & -B_z & 0 & B_x \\
-E_z & B_y & -B_x & 0
\end{pmatrix}
\]
Here, the components \( E_x, E_y, E_z \) and \( B_x, B_y, B_z \) are the comoving electric and magnetic fields, which depend on time and space.
<p>In the expanding universe, however, the physical electric and magnetic fields are scaled by the scale factor \( a(t) \) of the universe:</p>
<ul>
<li><b>Physical electric field: </b>\( \mathbf{E}_{\text{phys}} = a^{-2}(t) \mathbf{E} \),</li>
<li><b>Physical magnetic field: </b>\( \mathbf{B}_{\text{phys}} = a^{-2}(t) \mathbf{B} \).</li>
</ul>
The factor \( a^{-2}(t) \) arises because the electric and magnetic fields are components of the field tensor, which behaves like a two-form and must be rescaled appropriately in curved spacetime.
<h4 id="homo-maxwell">Homogeneous Maxwell Equations in an Expanding Universe</h4>
The homogeneous Maxwell equations in curved spacetime are derived from the Bianchi identity:
\[
\nabla_\alpha F_{\beta\gamma} + \nabla_\beta F_{\gamma\alpha} + \nabla_\gamma F_{\alpha\beta} = 0
\]
This can be written in terms of the components of the electromagnetic fields \( \mathbf{E} \) and \( \mathbf{B} \) as:
\[
\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0
\]
This equation remains valid in the FLRW metric without modification. It describes how the magnetic field evolves with time and space in the expanding universe.
<p>The second homogeneous equation, \( \nabla \cdot \mathbf{B} = 0 \), also remains unchanged in the FLRW universe. The magnetic field lines remain divergence-free, which corresponds to the fact that there are no magnetic monopoles.</p>
<h4 id="inhomo-maxwell">Inhomogeneous Maxwell Equations in an Expanding Universe</h4>
The inhomogeneous Maxwell equations in curved spacetime are written as:
\[
\nabla_\nu F^{\mu\nu} = \mu_0 J^\mu
\]
Expanding this, we get two sets of equations, one for the electric field and one for the magnetic field.
<ul>
<li><b>Gauss's Law for Electricity:</b>
The \( \mu = 0 \) component of the above equation gives the generalized Gauss's law:
\[
\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}
\]
where \( \rho \) is the comoving charge density. In an expanding universe, this equation remains the same, but the physical electric field is related to the comoving electric field by the scale factor, so:
\[
\nabla \cdot \left( a^2(t) \mathbf{E}_{\text{phys}} \right) = \frac{\rho}{\epsilon_0}
\]
This means that the electric field decreases in magnitude as the universe expands.
</li>
<li><b>Ampère's Law with Maxwell's Correction:</b>
The \( \mu = i \) components give Ampère's law, modified to account for the expansion:
\[
\nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = \mu_0 \mathbf{J}
\]
In an expanding universe, this becomes:
\[
\nabla \times \left( a^2(t) \mathbf{B}_{\text{phys}} \right) - a^2(t) \frac{\partial \mathbf{E}_{\text{phys}}}{\partial t} = \mu_0 \mathbf{J}
\]
where \( \mathbf{J} \) is the comoving current density. Similar to the electric field, the physical current density is related to the comoving current density by \( \mathbf{J}_{\text{phys}} = a^{-3}(t) \mathbf{J} \).
</li>
</ul>
<div class="grey-box">
<h5>Summary</h5>
The Maxwell equations in an expanding FLRW universe can be summarized as follows:
<ol>
<li><b>Gauss's Law: </b>
\[
\nabla \cdot \left( a^2(t) \mathbf{E}_{\text{phys}} \right) = \frac{\rho}{\epsilon_0}
\]
</li>
<li><b>Faraday's Law: </b>
\[
\frac{\partial \mathbf{B}_{\text{phys}}}{\partial t} + \nabla \times \mathbf{E}_{\text{phys}} = 0
\]
</li>
<li><b>Gauss's Law for Magnetism: </b>
\[
\nabla \cdot \mathbf{B}_{\text{phys}} = 0
\]
</li>
<li><b>Ampère's Law: </b>
\[
\nabla \times \mathbf{B}_{\text{phys}} - \frac{\partial \mathbf{E}_{\text{phys}}}{\partial t} = \mu_0 a^{-3}(t) \mathbf{J}_{\text{phys}}
\]
</li>
</ol>
<p><b>Implications of Maxwell's Equations in an Expanding Universe:</b></p>
In an expanding universe, several important features arise from these equations:
<ul>
<li>The electric and magnetic fields decrease with the expansion of the universe as \( a^{-2}(t) \). This reflects the dilution of energy density as the universe expands.</li>
<li>The current density also dilutes with expansion as \( a^{-3}(t) \), meaning that electromagnetic sources become weaker as the universe grows.</li>
<li>Faraday rotation, which depends on the interaction of electromagnetic waves with magnetic fields in plasma, will also evolve with time in the expanding universe, providing a tool for probing cosmic magnetic fields in the large-scale structure of the universe.</li>
</ul>
</div>
</section>
<section>
<h2 id="derivation">Derivation of Maxwell's equation in expanding background</h2>
To derive the homogeneous Maxwell equations in an expanding universe using the <b>Bianchi identity</b>, we need to first understand the basic mathematical structure. The homogeneous Maxwell equations can be expressed in terms of the <b>electromagnetic field strength tensor</b> \(F_{\mu\nu}\), and the <em>Bianchi identity</em> is a statement about the properties of the curvature of spacetime. It naturally leads to the form of Maxwell's homogeneous equations (such as <b>Faraday's law</b> and the condition \( \nabla \cdot \mathbf{B} = 0 \)).
<h4 id="bianchi">The Bianchi Identity</h4>
The Bianchi identity in curved spacetime is written as:
\[
\nabla_\alpha F_{\beta\gamma} + \nabla_\beta F_{\gamma\alpha} + \nabla_\gamma F_{\alpha\beta} = 0
\]
This identity holds in any spacetime and is a generalization of the fact that the curl of a gradient vanishes. In flat spacetime, this is related to the fact that the electric and magnetic fields are derivable from a potential.
<ul>
<li>\(F_{\mu\nu}\) is the electromagnetic field tensor.</li>
<li>\( \nabla_\alpha \) denotes the covariant derivative in curved spacetime.</li>
</ul>
The Bianchi identity is the geometric foundation of the homogeneous Maxwell equations, which describe the absence of magnetic monopoles and the relationship between the changing magnetic field and the electric field (i.e., Faraday's law).
The Bianchi identity provides a natural mathematical foundation for the homogeneous Maxwell equations, which in an expanding universe are modified by the presence of the scale factor \(a(t)\). The physical electric and magnetic fields dilute as \(a^{-2}(t)\), but the form of the equations remains very similar to that in flat spacetime. These equations are crucial for understanding the behavior of electromagnetic fields in cosmological contexts, such as the generation and evolution of cosmic magnetic fields in the early universe.
</section>
<!-------Reference ------->
<section id="reference">
<h2>References</h2>
<ul>
<ul>
<li><a href="https://news.mit.edu/2022/how-universe-got-its-magnetic-field-0525">How the universe got its magnetic field</a></li>
<li>Baryon-Dark matter interaction in presence of magnetic fields in light of EDGES signal, Jitesh R Bhatt, Pravin Kumar Natwariya, Aleka C. Nayak, Arun Kumar Pandey <span><a href="https://arxiv.org/abs/1905.13486">[arXiv:1905.13486 [astro-ph.CO] (2019)]</a>, Eur. Phys. J. C 80, 334 (2020)</span></li>
<li id="paper-1">Implications of baryon-dark matter interaction on IGM temperature and tSZ effect with magnetic field, Arun Kumar Pandey, Sunil Malik, T. R. Seshadri, <a href="https://arxiv.org/abs/2006.07901">arXiv:2006.07901 [astro-ph.CO] (2020)</a>, Mon.Not.Roy.Astron.Soc. 500 (2020)</li>
<li id="paper-2">Thermal SZ effect in a magnetized IGM dominated by interacting DM decay/annihilation during dark ages, Arun Kumar Pandey, Sunil Malik (2022) <a href="https://arxiv.org/abs/2204.08088">[arXiv:2204.08088]</a></li>
</ul>
</ul>
</section>
<hr>
<div style="background-color: #f0f0f0; padding: 15px; border-radius: 5px;">
<h3>Some other interesting things to know:</h3>
<ul style="list-style-type: disc; margin-left: 30px;">
<li>Visit my website on <a href="sql-project.html">For Data, Big Data, Data-modeling, Datawarehouse, SQL, cloud-compute.</a></li>
<li>Visit my website on <a href="Data-engineering.html">Data engineering</a></li>
</ul>
</div>
<p></p>
<div class="navigation">
<a href="index.html#portfolio" class="clickable-box">
<span class="arrow-left">Portfolio section</span>
</a>
<a href="portfolio-details-2.html" class="clickable-box">
<span class="arrow-right">Content</span>
</a>
</div>
</div>
</section><!-- End Portfolio Details Section -->
</main><!-- End #main -->
<!-- ======= Footer ======= -->
<footer id="footer">
<div class="container">
<div class="copyright">
© Copyright <strong><span>Arun</span></strong>
</div>
</div>
</footer><!-- End Footer -->
<a href="#" class="back-to-top d-flex align-items-center justify-content-center"><i class="bi bi-arrow-up-short"></i></a>
<!-- Vendor JS Files -->
<script src="assets/vendor/purecounter/purecounter_vanilla.js"></script>
<script src="assets/vendor/aos/aos.js"></script>
<script src="assets/vendor/bootstrap/js/bootstrap.bundle.min.js"></script>
<script src="assets/vendor/glightbox/js/glightbox.min.js"></script>
<script src="assets/vendor/isotope-layout/isotope.pkgd.min.js"></script>
<script src="assets/vendor/swiper/swiper-bundle.min.js"></script>
<script src="assets/vendor/typed.js/typed.umd.js"></script>
<script src="assets/vendor/waypoints/noframework.waypoints.js"></script>
<script src="assets/vendor/php-email-form/validate.js"></script>
<!-- Template Main JS File -->
<script src="assets/js/main.js"></script>
<script>
document.addEventListener("DOMContentLoaded", function () {
hljs.initHighlightingOnLoad();
});
</script>
</body>
</html>